• 締切済み
  • 困ってます

分数関数 割り切るためには?

前回書き間違いをしてしまい、ご迷惑をおかけしました。 正しい質問は f(x)=(ax+b)/(cx+d) (a,b,c,dはともに整数) という形の分数関数において右辺が割り切れるように整数xを定めたいとき、手当たりしだい代入していく以外にxを全て、もしくはひとつでも求めることが可能か?というものです。 例として f(x)=(-5x+77)/(9x+4) 例の場合はx=3のとき62/31となり割り切れるので、解のひとつとなります。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数128
  • ありがとう数1

みんなの回答

  • 回答No.2

f(x)=(-5x+77)/(9x+4)の右辺において、分子を分母で割って、次のように変形します。 f(x)=(-5x+77)/(9x+4)=(1/9)*{-5+(713)/(9x+4)} これが整数になるから、713の正負の約数を考えると、9x+4=±713、±31、±23、±1である。 この中で、f(x)が整数になるのはx=±3のみ。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 分数関数の有理点は求まる?

    考え始めたのはいいものの煮詰まってしまいました・・。ご教授お願いします。 質問は f(x)=(ax+b)/(cx+d) (a,b,c,dはともに整数) という形の分数関数においてf(x)が有理点を取るようなxの値を全て、もしくはひとつでも求めることは可能か?というものです。 例として f(x)=(-5x+77)/(9x+4) 例の場合はx=3のとき62/31が解のひとつとなります。 よろしくお願いします。

  • 整式で表された関数f(x)が

    整式で表された関数f(x)が、f'(x){f'(x)-x}=f(x)+2(x+1)を満たすとき、f(x)を求めよ。 という問題で、f(x)がn次式であるとすると、教科書では、 (a)n=0,1のときf(x)=ax+bとおけ、f'(x)=aより与式に代入して、恒等的に解いて、f(x)=-x-1 (b)n>=2のとき左辺は2(n-1)次式、右辺はn次式より、2(n-1)=n n=2より f(x)=px^2+qx+rとおいてf'(x)=2px+qより与式に代入して、恒等的に解いて、f(x)=(3/4)x^2+2x+2 ということらしいのですが、 n>=2のとき、例えば、f(x)=(1/2)x^2+cx+dのとき、f'(x)-xは定数(c)となり、左辺は1次式となって、 左辺は必ずしも2(2-1)=2次式とは言い切れないと思うのですが、どうでしょうか。解答として不十分なのでしょうか。 一度先生に質問してみたところ、n=2はあくまでも必要条件だから、このままでよいと言われましたが、 どういうことでしょうか。 解答お願いします。

  • 逆関数(大学受験問題)

    次の問題について質問させてください。 分数関数f(x))=(ax+b)/(cx+d)の逆関数を求める問題です。 解答は y=(ax+b)/(cx+d)をxについて解くと x(cy-a)=-dy+b すなわちx=(-dy+b)/ cy-a とあるんですが、ここで質問です。 この場合cy-aで割っているので、cy-a≠0を示す必要があるのではないですか? 問題文には特に示されていないのですが・・・。 ただ自分で示そうと思っていろいろやってみたのですが、できませんでした…。 それともここでは示す必要はないのでしょうか? どなたかご存知の方アドバイスをお願いできませんか。よろしくお願いいたします。

  • 回答No.1

式を分解してください。 a÷c+b/(cx)+(a÷d)×x+(a÷d) になりますね。 第1項a÷c 第2項c+b/c 第3項a÷d 第4項a÷d ここで良く注意してください。1、3、4項は分子にa があります。分母にはd、cで あは aはd、cの倍数出なければなりません。 第2項ではbはcの倍数ではなければなりません。 これでxが整数なら全て整数です。 問題はx以外の項が全て整数でなければと考えてどのようなことになるのか、整数にならない数列を探し、 それに対してXは整数になるための数列を探ってください。 参考になれば幸いです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 部分分数の和に分解

    現在、部分分数分解で問題が解けなくて困っています。 問: x^3-3x+3/f(x) を部分分数の和に分解せよ まずf(x)=x*g(x)とおき 与式をx^3-3x+3/x*g(x)と変形し A/x+(bx^2+cx+d)/g(x)と分解します。 ですがこの後どうやっていけばいいのかがわかりません。 なんか部分分数の基本的なところから理解が足りてない気がします。 どなたかご指導のほどよろしくお願いします。

  • 微分できない関数のべき級数展開

    関数f(x)は奇関数であり、xが正の整数ならばf(x)=1とします。 この関数がべき級数展開可能かどうかの質問です。 f(x)=ax とおくと f(1)=1 から a=1 よって f(x)=x f(x)=ax+bx^3 とおくと f(1)=1, f(2)=1 から a=7/6, b=-1/6 よって f(x)=(7/6)x-(1/6)x^3 f(x)=ax+bx^3+cx^5 とおくと f(1)=1, f(2)=1, f(3)=1 から a=37/30, b=-1/4, c= 1/60 よって f(x)=(37/30)x-(1/4)x^3+(1/60)x^5 この3つの結果からすると、このまま進めて行っても各係数は発散するとは限らないように思えます。 実際に各係数の極限値を求めるのは私の手に余るのですが、べき級数展開は可能ですか?

  • 関数方程式 未知関数 No.2

    関数方程式における未知関数が何なのか 良くわかりません。 前回の質問で、微分方程式でない関数方程式に ついて教えて頂きました。 前回の質問:http://okwave.jp/qa/q8158572.html 例として、 すべての指数関数は f(x + y) = f(x)f(y) を満たす。 すべての対数関数は f(xy) = f(x) + f(y) を満たす。 などです。 ここで、 指数関数f(x + y) = f(x)f(y)について、 a^(x+y)=a^x・a^y であることは理解できます。 対数関数 f(xy) = f(x) + f(y)について、 (対数の底はa) log(xy)=logx+logy であることも理解できます。 指数関数a^(x+y)=a^x・a^y 対数関数 log(xy)=logx+logy において、未知関数とはどれですか? a^x・a^yやlogx+logyをy=・・・の形にして yは未知関数と呼ぶのでしょうか? a^x・a^yやlogx+logyをy=・・・の形にどうすれば 出来るでしょうか? 微分方程式の場合、yを求めてyがなにかしらの関数 になるから未知関数と言うのは理解できます。 また、前回の質問で微分方程式 (1)y'=f(y/x) (2)y'=f(x/y) について、 (1)と(2)は線形微分方程式,非線形微分方程式どちら でしょうか? (1)は線形で(2)は非線形だと認識していますが 正しいでしょうか? 以上、ご回答よろしくお願い致します。

  • 分数関数のグラフの漸近線の方程式について教えてください。

    分数関数のグラフの漸近線の方程式について教えてください。 f(x)=2x^2/x^2-3x+2 この関数についてなのですが、解説を読んでも理解できなかった箇所があったので質問させていただきます。 f(x)=2+{6x-4/(x-1)(x-2)}と変形できるから、 lim(x→1+0)f(x)=-∞ lim(x→1-0)f(x)=∞ lim(x→2+0)f(x)=∞ lim(x→2-0)f(x)=-∞ このあとはlim(x→±∞){f(x)-2}=0となって、求める漸近線の方程式はx=1,x=2,y=2 となっているのですが、∞と-∞の区別がどうしてこうなるのか分かりませんでした。 すいませんが回答宜しくお願いします。

  • 数IIIの関数の問題です。

    a^2 + bc ≠ 0 の時、分数関数 f(x) = (ax + b)/(cx - a) の逆関数は、f(x) に等しいことを証明せよ。 という問題です。 解答よろしくお願いします。

  • 一次方程式(分数)

    方程式の分数の問題で分からない問題がありましたので質問させてもらいます。 式は 2/5x-3 = 3/10x+1/2 です。xはエックスです。 このような問題には分母の最小公倍数を左辺と右辺にかけるのは知っています。 しかし、私はここで行き詰ってしまいました。 そのため、同じような式の例を見てみましたが、その後に出来た次の式がどうしてそのような数字になるのか分かりません。 具体的な例を挙げられないので、申し訳ございません。 どうか答え(解)と解説をお願いできないでしょうか。 自分は理解力が少ないのでいつも困っています。

  • 微分の極限値(注:初心者)

    高校数学の本で微分の極限値の説明で、 lim(x→1) x^2 - 1/x-1=(x+1)(x-1)/x-1=lim(x→1) x+1=2 という式が書いてるのですが、これは結局 f(x)=x+1 という1次関数のlim(x→1)の場合のf(x)の極限値の事ですが、なぜ最初わざわざ分数で表して約分でx+1に変形してからxに1を代入するような説明なんでしょうか?最初の分数の状態でxに1を代入すれば分母も分子も0になり、そこで式が終わってしまうという事が言いたいだけなんでしょうか?なぜこういう説明があるのかが理解できません。微分係数のf'(x)=f(x+h)-f(x)/h の式でhにいきなり0を代入したらそこで式が終わってしまうという事を説明するためなのでしょうか?この文の必要性がいまいち分かりません。わかりにくい質問かもしれませんが引っかかるので、質問の真意がわかる人お願いします。ようするに、なぜ最初 x^2 - 1/x-1=(x+1)(x-1)/x-1 という分数で表してその後約分で x+1 の形に持ってくるような書き方なのかが知りたいんです。

  • 関数について教えてください

    xの関数f(x)=|x(二乗)-4x+3|、g(x)=x+a (aは定数)について (1)y=f(x)のグラフとa=1 の場合のy=g(x)のグラフを同じ座標平面に書きなさい。 (2)y=f(x)のグラフとy=g(x)のグラフの交点の個数aについての場合分けを考えて答えなさいという問題を解いてみたら f(x)は絶対値がかかってます。x軸で、1と3のとき、また山のように盛り上がったグラフになります…後は直線y=x+1 を書く。ちなみに、山のところのグラフは、頂点のx座標は変わらなくて、y座標だけ、対称になって、また、y=ーx^2のグラフの平行移動した形です。つまりy=ーx^2+4x-3 です。 (2) は、x≦1,3≦x と1<x<3 で場合わけして考えますね。 f(x)-x=a という形にします。これで、左辺の関数を定義域にしたがって、書くと右辺はy=a の定数関数で直線よりも分かりやすい形になります。これで、y座標を自在に操って、交点の個数とそのためのaの条件をグラフから読み取る。最高4つ できるになったんですけど、あっていますか? もしも、まちがっていたら途中式も含めて教えてください。

  • 関数方程式、微分方程式

    関数f(x)は、f(x+y)=f(x)+f(y)+f(x)f(y)を満たしている。 関数f(x)が、x=0で微分可能であるとき、 (1) 関数f(x)はすべてのxの値で微分可能であることを示せ。 (2) 関数f(x)を求めよ。 ※(2)はわかるので省きます。 y=0と置くと、f(x+0)=f(x)+f(0)+f(x)f(0)より、 f(0){f(x)+1}=0 従って、f(0)=0またはf(x)=-1 ●(i)f(0)=0のとき f'(0)=lim[h→0] f(h)/h = aとおくと、 f'(x)=lim[h→0] {f(x+h)-f(x)}/h =lim[h→0] {f(h)+f(x)f(h)}/h = a{f(x)+1} ●(ii)f(x)=-1のとき f'(x)=0より、微分可能。 f'(0)が存在するので、それを利用してf'(x)が存在することを示す、というのはわかります。 なぜy=0を代入するのですか? 代入すると上手くいきますが、必ずしもy=0でなければいけないのでしょうか?

  • 3次関数が極値をもつ必要十分条件

    3次関数f(x)が極値をもつ⇔f'(x)=0が異なる2つの実数解をもつ なんですよね? これは、f'(x)=0が実数解α、β(α≠β)をもつとき、f(α)、f(β)は極値となる、ということにはならないんでしょうか? 例えば、 3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり、x=2で極小値-6をとるとき、定数a,b,c,dの値を求めよ。 という問題で、 x=0で極大値2をとり、x=2で極小値-6をとる⇒f'(0)=0、f'(2)=0 つまりf'(x)=0が異なる2つの実数解をもつのだから、しかもf(0)=2、f(2)=-6という条件も代入しているのだから、a,b,c,dを求めた後に確認をする必要があるというのが理解できません…