• 締切済み
  • 困ってます

単振動の微分方程式を刻みhについてルンゲクッタで求める。

m*d^2x/dt^2=-kx x(0)=1 dx/dt=0 というのが与えられて二階微分だから一階微分にするために dx(t)/dt=v(t) dv(t)/dt=-k*x(t)/mという式を立てました。オイラー法ではできたのですが2次、4次のルンゲクッタだとできません。どなたか回答お願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2
  • ojisan7
  • ベストアンサー率47% (489/1029)

ひとつ補足をするのを忘れていました。 なにか、ルンゲクッタ法を使ったプログラムのサンプルに目を通すことも、使い方を学ぶ上で参考になると思います。そして、自分で、簡単なプログラムを作り、何か簡単な微分方程式で実行してみることです。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • ojisan7
  • ベストアンサー率47% (489/1029)

ルンゲクッタ法は2次にしても、4次にしてもステップ数はそんなに多くはないので(数ステップ程度)簡単にできると思います。教科書にある公式通りに入力すればできると思います。がんばってください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分方程式の問題

    次の問題がよく分かりません。本には答えだけが書かれていて、どうやって解いたのか分からないんです。解説を詳しく書いてくださると助かります。よろしくお願いします。 x軸上を運動する質量mの質点Pがある。時刻tにおけるPのx座標をxとするとき、微分方程式m(d^2t/dt^2)=-kxが成り立つという。ただし、kは正の定数とする。t=0のとき、x=0、dx/dt=v0(定数)として、xをtの式で表せ。 答え・・・x={√(m/k)}v0sin({√(k/m)}t)     

  • 微分方程式

    dx/dt= v dv/dt= -x (初期条件t = 0 に於いてx = -1 v = 0) を満たす微分方程式を t=1,2,3,4の時での詳しい解答を教えてください。 1番上の2式を併せるとd^2x/dt^2 = -x(初期条件t = 0 に於いてx = -1 dx/dt = 0)となります。

  • 物理の微分方程式

    物理の微分方程式 高二です。塾で微分方程式を習ったのですが、さっぱりです。。。。 問 質点が速度Vに比例する抵抗力を受けて運動する際、V(t)、X(t)を求めよ。ただし、比例定数をk(>0)とする。 解 ma = mg-kv --1 a = dv/dt --2 v = dx/dt --3 1,2より dv/dt = g-kv/m よって dv/dt = -k/m(v-mg/k) ---4 ←変数分離型     (1/v-mg/k)dv = -k/m dt ----5 ここから積分して、計算して log{v(t)-mg/k} = C-kt/m ----6 (C=log{v(0)-mg/k}) {}は絶対値 そして {v(t)-mg/k} = e^C -e^-kt/m -----7 その後 v(t)=mg/k(1-e^-kt/m)(t≧0) となりました 質問 (1)初期条件ってなんですか?   (2)4→5の過程はなぜやるんですか?変数分離型ってなんですか?   (3)6→7の過程でなぜlogがとれるんですか?   (4)よければx(t)の答えを教えて下さい とても困っています!部分的でもよいので教えて下さい、お願いします

  • 常微分方程式、4次のルンゲクッタ法

    (d^2x/dt^2)-2(dy/dt)=f(x) (d^2y/dt^2)+2(dx/dt)=g(y) この連立常微分方程式を4次のルンゲクッタ法で解くためにはどうすればいいのでしょうか?

  • オイラー法、ルンゲクッタ法について。

    オイラー法、ルンゲクッタ法について。 この2つについて分からない事があるので質問します。 まず、オイラーについてですが、yi+1=yi+hf(x,y)という式がテイラー展開によって求まると言われましたが、テイラー展開の2次以降の項は微少量として無視できるのは分かります。でもそもそもテイラー展開ってひとつ先の値を今の値から求まるみたいな展開でしたっけ??というのが一つ目の質問です。 2つ目は、オイラーの式の中のf(x,y)についてです。簡単なバネ・マス・ダンパ系を考えた時、運動方程式はm・d2x/dt2+c・dx/dt+kx=0となると思いますが、この場合のf(x,y)はどうやって求めるのでしょうか。 3つ目はルンゲクッタそもそもについてです。 ルンゲクッタとはK1K2K3K4という係数(?)に1221という重みをかけるとyi+1が求まるそうですが、この理由がどんなサイトや本を見ても納得出来ません。 何か分かりやすい本やサイトがあれば教えて頂けないでしょうか。 以上3つの質問、回答よろしくお願いします。

  • 微分方程式

    こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 問題 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) 少し問題の書き方がおかしいかもしれませんが(微分の書き方)どなたかお願いします。 自分なりにといたのですが 与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) ∫(1/2)*d/dt*(dx/dt)^2=-∫dx/dt*(1/x^2) ????? と与えられたヒント通りにしてそこからどうしたらいいのかわからなくなってしまいました・・・

  • 常微分方程式の問題

    微分方程式x'=x^2-t-1で初期値がx(0)=1の問題で、 オイラー法とルンゲクッタ法は出せたのですが、 それらと比較するために出す解析解がわかりません。 どなたかよろしくお願いします。

  • 微分方程式

    こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 (1) 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) (2)0<x0<1のときt(t≧0)餓変化した場合のx(t)の最大値を求めよ。 (1)は与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) (1/2)*d/dx*(dx/dt)^2=-(1/x^2) 両辺xで積分すると (dx/dt)^2=2/x+2(1-1/X0)(初期条件より) (2) は dt/dxが0すなわち1/xが-(1-1/X0)のときかとおもったのですが よくわからないです。 どなたかおねがいします。。

  • 微分方程式・・・。

    問題はdt/dx=x^2 , x(0)=a この微分方程式の解x(t)が任意の時刻t>0までに存在するまでの初期値aの満たすべき条件を求めよ。 という問題です。オイラー法を使ってやるのかなってとこぐらいまでしかわかりません・・。dx/dt=f(t,x)とx(to)=xo から先に進みません。 アドバイスいただけませんか。

  • 減衰振動の微分方程式の解

    先生から配られたプリントには減衰振動の微分方程式が「m(dx/dt)^2+2γ・dx/dt+ω^2x=0」の時、解が「x=A・EXP(-γt)cos(ω´t+φ)」って書かれてます。 摩擦:гならг/m=2γ、バネ定数:kならk/m=ω^2、A=√C1^2+C2^2、φ=C1/C2、ω´^2=ω^2-γ^2です。 解の式で、cosじゃなくてsinではないのですか?単振動・強制振動の場合も同様にcosでした。 誰かよろしくお願いいたします。