• ベストアンサー
  • 困ってます

高1 2次関数のグラフと二次方程式

a、bは定数とする。すべての実数aに対して、xの二次方程式 x2乗+ax+a2乗+3ab+3=0 が 実数解をもたないときのbの値の範囲を求めよ。 という問題なのですが、判別式を使って  a2乗+4ab+4>0 というところまではわかりますが、この先が全くわからないのです。 どなたか親切な方ご指導お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数216
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • postro
  • ベストアンサー率43% (156/357)

a2乗+4ab+4>0 までわかったのなら、 すべての実数aに対してこの不等式が成り立つから、 a-y平面で、 y=a2乗+4ab+4 のグラフがa軸に交わらない⇔a2乗+4ab+4=0の判別式が負 すなわち D/4=(2b)^2 -4<0 -1<b<1 ということか

共感・感謝の気持ちを伝えよう!

質問者からのお礼

こんな質問でも御丁寧な解答ありがとうございます。 とても分りやすい説明で良く理解出来ました。

関連するQ&A

  • 二次方程式

    (1)二次方程式x&#178;-6x+2k+1=0が実数解をもつような定数kの値の範囲を求めよ。 (2)二次方程式x&#178;-6(k+2)x+(k+1)&#178;=0が重解をもつときkの値を求めよ。 解法が分からないです。回答、よろしくお願いします。

  • 数学 二次方程式 定数の範囲について

    x^2+ax+3a=0 (1) x^2-ax+a^2-1=0 (2) 二つの二次方程式がともに実数解をもつように定数aの値を求めよ。 (1) 判別式D≧0を使う。 a^2-12a≧0 a≦0 、 12≦a (2) 同じく判別式D≧0を使う。 -3a^2+4≧0 a≦-(2√3)/3 、 (2√3)/3≦a 私の答え a≦0 、 (2√3)/3≦a となったのですが、答えは -(2√3)/3≦a≦0 のようです。 私はどこで間違ったのでしょうか? 調べて考えた結果、D≧0ではなく、どこかでD≦0となる部分があるように思えました。 ですが、どこでなるのかもわからないし、なぜD≦0になるのかもわかりません。 実数解を持つようにいわれてるのに、答えに負の範囲があるのも疑問です。(私の間違った答えにも0≧aがあるのですが、なぜなんでしょうか。)

  • 二次方程式 数学

    二次方程式3x^2-4kx+5k-3=0 が重解を持つとき、定数kの値を求めよ。 この問題の答えは 式 b^2-4ac を使って 答えが k= 3/4 , k= 3 なのですが、 これに判別式で解いたら別の解が出てしまいました。。。 この問題に判別式は使わないのですか? だとしたらそれは なぜなのですか?? よろしくお願いします

その他の回答 (1)

  • 回答No.1
  • debut
  • ベストアンサー率56% (913/1604)

すべての実数aということなので、さらにa^2+4ab+4>0が成り立 つ条件を考えると、aについての方程式a^2+4ab+4=0で判別式<0 とすればいいことになります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほど。今度はaについての式をたてれば良かったのですか。ご解答して頂きありがとうございます。

関連するQ&A

  • 二次方程式

    k>1のとき、 次の二次方程式の実数解の個数を求めよ。 1) x^2+2x+k=0 2)x^2-(k+1)x+1=0 判別式がどういう条件の時で 求めるんですか? 解き方教えてください!

  • 二次方程式

    次の二次方程式が実数の解をもつように、定数kの値の範囲を求めよ。 k^2x^2+(k+1)x+4=0 解法から全然わからないです。回答、よろしくお願いします。

  • 二次方程式 共通解の問題

    2つの二次方程式、x^2+2mx+10=0、x^2+5x+4m=0がただひとつの共通な実数解をもつとき、定数mの値とその共通解を求めよ。 共通解をαとおいて、αと定数mの連立方程式を解いて出た答えの、m=5/2、α=2をなぜそのまま答えとしてはいけないのか、その理由を教えてください。 答えはmが&#65293;7/2、αが2。 m=5/2を代入したら判別式が<0になるからとかそういうことは聞いてません。 ちゃんとした理由がほしいので詳しい回答お願いします。

  • 二次方程式の判別式について

    以前、数学の授業で判別式D=b^2-4acを使って、二次方程式の実数解の有無を調べることを習いました。 質問なのですが、なぜ判別式D=b^2-4acを使うとその二次方程式の実数解の有無が分かるのでしょうか? よろしくお願いします。

  • 二次方程式の解について。

     二次方程式が実数の範囲で解を持つか、または複素数の範囲で解を持つかは、二次方程式の解の公式の「判別式」で判断することができますよね。  そこで、この判別式を使って、二次方程式の解が実根になる確率と虚根になる確率と、どっちが大きいのか考えてみました。  まず、簡単にするために二次方程式  ax^2+bx+c=0  の両辺をaでわって、新しくできる係数をp,qとします。そうしてできた二次方程式の判別式は  p^2-4q  となりますよね。この判別式が0に等しいとして、この式を変形していきます…  p^2-4q=0  4=p^2/q  つまり数直線で考えると、p^2/qが丁度4になったとき二次方程式は一つの解しか持たないことになります(重根でしたか?)。同様に考えると(-∞,4)の範囲で二次方程式は虚根を、(4,∞)の範囲で二次方程式は実根をもつはずです。  そう考えると、虚根を持つ範囲の方が4つ分広いので確率が高いとおもったのですが、どうなるのでしょうか?  それとも、私の考え方がどこか間違っていたのでしょうか?

  • 数? 二次方程式の問題

    数? 二次方程式の問題 2次方程式x^2-(a-2)x+(a/2)+5=0が、1≦x≦5の範囲に異なる2つの実数解をもつとき、定数aの値の範囲を求めよ。 という問題なんですけど、どうしても解けません。 解説して下さると嬉しいです。

  • 二次方程式の判別式

    二次方程式の判別式b^2-4acなのですが、 この判別式はax^2+bx+c=0で、a=0の時は使ってはいけない理由を知りたいです。 成り立たない場合として、 a=0,b=0の時、c=定数という直線グラフで、c=0でない限り「実解なし」なのに(判別式)=0となる場合。 a=0,b>0,c≠0の時、直線グラフはx軸を貫くはずなのに(判別式)<0となる場合。 が思いつくのですが・・・。 「判別式は二次方程式の解の公式の一部だ」というのは結果であって、定義でないように思えるのですが・・・

  • xの二次方程式

    xの二次方程式 x^2&#65293;2ax+4=0の解が次の条件を満たすようなaの値の範囲を求める。 1. 2つの解がともに1より大 2. 1つの解が1より大で、他の解が1より小 皆さんならどう解きますか? f(x)=x^2-2ax+4 (x-a)-a^2+4=0 1. f(x)=0の判別式D≧0 D/4=a^2-4≧0 a≦-2,2≦a &#8226;f(1)>0 1-2a+4>0 a<5/2 &#8226;軸が1より大きい f(x)=(x-a)^2-a^2+4 軸 x=a a>1 以上より、2≦a<5/2 2. f(1)<0となればいい a>5/2

  • 数I 二次方程式の範囲 訂正

    もう一度解きなおしてみました。 「方程式x&#178;&#65293;2ax+2a&#178;&#65293;5が1より大きい相異なる2個の実数解をもつような定数aの値の範囲を求めよ。」 自分の回答▽ f(x)=x&#178;&#65293;2ax+2a&#178;&#65293;5とするとf(x)=(x&#65293;a)&#178;+a&#178;&#65293;5 二次方程式f(x)=0が1より大きい相異なる2個の実数解をもつための条件は放物線y=f(x)が1より大きいx軸の正の部分と異なる2点で交わることである。これは次の(1)~(3)が同時に成り立つことと同値である。 (1)f(x)=0の判別式をDとするとD/4=a&#178;&#65293;(&#65293;5)=a&#178;+5>0 これを解いてa<&#65293;√5、√5<a…(1) (2)放物線y=f(x)の軸は直線x=aなので、この軸は1より大きいからa>1…(2) (3)f(x)>0から1&#65293;2a+2a&#178;&#65293;5>0よってa>2、a>5…(3) (1)(2)(3)の共通範囲を求めてa>5 ,, となりました。合ってますか? それと、この放物線のグラフを書く場合はy軸は省略してもいいのでしょうか。

  • 二次方程式が分かりません

    二次方程式xの二乗-(3a+b)x+2aの二乗+ab+a+b-1=0が重解をもつとき,自然数a,bの値を求めよ。 という問題なんですが,D=aの二乗+2ab+bの二乗-4a-4b+4=0まで解いたのですが,その先,どのようにすれば,自然数a,bがでてくるのかが,分からないので教えてください。