• ベストアンサー
  • 困ってます

不定積分の問題で

∫((1/x)+logx)e^x dx (log xは自然対数が底である。)を部分積分や置換積分をやってもうまくいきません。 どのようにしたら解けますか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数93
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

(uv)' = u'v + uv'の公式を使えば {(log x)e^x}' = (1/x)e^x + (log x)e^x 左辺は積分したい関数ですね。 したがって積分は (log x)e^x +C Cは積分定数です。 このように(log x) = 1/x を知っていたら直ぐ (log x)e^x の微分を考えてみるのも大切です。 (そのものが積分になっていますね。一般の場合は定数など多少調整することが多いですね。) こういった思い付きができ無い場合は被積分関数を2項に分けて, 第1項に部分分数展開の公式 ∫uvdx = {∫udx}v - ∫{∫udx}v'dx を適用して見てください。 u = 1/x, v=e^x とおけば ∫(1/x)e^x dx = {log x}e^x - ∫{log x}e^x dx となりますね。 右辺の第2項を左辺に移動してみてください。 ∫(1/x)e^x dx +∫{log x}e^x dx = {log x}e^x 左辺は求める積分を2項に分けただけの形になっていますね。積分を合体して共通の e^xで括れば求める積分の式で右辺が積分結果になっています。 積分定数Cを足せば求める積分結果になりなす。 ご自分で式を追って確認してみてください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。

関連するQ&A

  • 対数の不定積分

    対数の積分で、例えば∫log(3x)dxという問題があったときに 普通に部分積分を使って解く方法とは別に∫log(x)dx=xlog(x)-x+Cを利用しても解けると聞いたのですが今一分かりません とりあえず∫log(3x)dx=∫(log3+logx)dxという風にしてみたのですが、log3をxで積分するところで躓きました。定数なので○xという形になるとは思うのですが・・・。 何かやり方が違うのでしょうか?

  • 積分の問題教えてください

    積分の問題教えてください 1,部分積分 (1)∫xe^(2x) dx (2)∫xsin2x dx (3)∫(logx)/(x^3) dx (4)∫log(1+x) dx 2,置換積分 (1)∫(dx)/(2x+1)^3 (2)∫x((x^2)+1)^5 dx (3)∫x(e^(-x)^(2)) dx (4)∫cos^(3)xsinx dx (5)∫e^(x)cosx dx の9問です。 どうかお願いします。

  • 積分問題(自然対数、分数)

    ∫ 1/xe^(x/a) dx ↑この答えがわからず困っています… eは自然対数、aは定数です。 見ずらいかもしれませんが、xとe^(x/a)の積が 分母に来ていて、置換、部分積分も試しましたが分りませんでした どなたか回答お願いします。

その他の回答 (1)

  • 回答No.1

部分積分そのものです \int e^{x} (1/x) dx =e^{x} log(x) - \int e^{x} log(x) dx です.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。

関連するQ&A

  • 不定積分の問題です。教えてください。 

    こんにちは。 ∫1/X^2+1 dxという問題なのですが部分積分法や置換積分法を用いてもうまく解けません。解法を教えてください。

  • 不定積分の問題

    不定積分の問題ですが、部分積分法で解く問題ですが、考えても解答通りにならないので、ここで質問するに至りました。途中計算等を教えてください。お手数になりますが、どうか宜しくお願いします。 (1)∫x sec^(2)(x) dx 私が解くと、xtanx- sec^(2) + c になります。 (2)∫Tan^(-1)(x)dx (3)∫Sin^(-1) (x/3)dx (4)∫e^(-2x) sin3x dx ↑部分積分法を繰り返してもとめるのですが、どのような切り口で求めるのかが分かりませんでした。 答え (1) x tan(x) + log | cos(x) | + C (2) xTan^(-1) (x) - (1/2)log{x^(2) +1} + C (3) xSin^(-1) (x/3) + √(9-x^(2)) + C (4) {-e^(-2x)/13 } (2sin3x + 3cos3x ) + C

  • x/(a^2+x^2)の積分について

    x/(a^2+x^2)の積分について t=a^2+x^2とおいて dt=2xdx よって ∫(x/(a^2+x^2))dx=(1/2)*∫(1/t)dt=(1/2)*log(t)+C と置換積分により積分することが出来ますが、 部分積分では計算できないのでしょうか? (a^2+x^2)'=2x ∫(x/(a^2+x^2))dx=(1/2)*∫[(1/(a^2+x^2))*(a^2+x^2)']dx として計算できると思ったのですが、うまく行きません。 どなたかアドバイス頂けたら幸いです。

  • 不定積分

    ∫√(x^2-2)dx (1)部分積分で、x√(x^2-2)-∫x^2/√(x^2-2)dx この後進まず。 (2)置換積分で考えました  ア 三角関数でxを置き換え替えようとしましたが、sin,cos,tanいずれもダメなように思う  イ 他はあるのか 方針が分かればいいので、よろしくお願いします。

  • 数(3)・不定積分 : log(x+2)、log(1-x)の積分の仕方

    数(3)の不定積分で「log(x+2)」「log(1-x)」(どちらも底はeです)の積分をやったのですが、授業で理解しきれなかった事があります。 最初の問題は部分積分法の公式を使うと ∫log(x+2)=log(x+2)・x-∫1/(x+2)・xdx …(1)となり、 解答は log(x+2)・x-x+2log|x+2|+C (Cは積分定数) となるのですが、(1)式の右辺、「∫1/(x+2)・xdx」の部分を、何故、それぞれを約分して「∫1dx+∫1/2xdx」としてはいけないのかが判りません。 次の問題は、上と同じようにして部分積分法の公式を使うと ∫log(1-x)=log(1-x)・x+∫x/(1-x)dx …(2)となり、 解答は x・log(1-x)-x-log|1-x|+C(Cは積分定数) となるのですが、ここで、(2)式の右辺、∫x/(1-x)dxの部分を、部分分数に分けて∫{-1+1/(1-x)}にするのですが(今の式の『-1』は、(1-x)で割られない、普通の-1です)、そういう風に変形する意味が分かりません。 分かる方が居ましたら、教えて下さると嬉しいです!

  • 全ての整数nに対して、不定積分∫(x^n)*(logx) dxを求める

    全ての整数nに対して、不定積分∫(x^n)*(logx) dxを求めるにはどうすればいいでしょうか。 部分積分でなんとか出来るのかな?と考えましたが、 (x^n)の部分が何度も出てきて困っています。

  • 不定積分について

    大学一年の者です。問題に略解しかついていない某微分積分の教科書に記載されている問題なのですが、途中式がよくわからない問題があるので、質問させて頂きました。 ∫ dx/x(1+x^2)^2 なのですが、 ∫ dx/(1+x^2)^2 を積分して (x/1+x^2 + arctanx)/2 となり、これを用いて、部分積分による方法で解こうとしたのですが上手く解けません。ちなみにarctanxはアークタンジェントxのことです。  略解は   1/2(1+x^2) + log(x^2/1+x^2)/2 + C(積分定数) となっております。

  • 積分ができません

    ∫(1/xlogx)dx の積分がわかりません。 x=e^uと置換して積分したところlog(logx)となりました。これでいいのでしょうか。

  • 不定積分

    ∫(x/sin^2x)dx 【参考書の解説】 与式 =-(x/tanx)+∫(1/tanx)dx =-(x/tanx)+log|sinx|+C 【疑問点】 部分積分をしていることはわかるのですが、どこからtanxがでてきたのですか? 詳しい解説お願いします。

  • 部分積分? 置換積分?

    部分積分? 置換積分? ∫(√(K^2-x^2)/x)dx(Kは実数)の積分ですが、やはり部分積分でしょうか? よろしければ、細かい手順を教えていただけるとありがたいです。