• ベストアンサー
  • 暇なときにでも

数Bの数列についての質問です

次の数列の和をΣを用いて表し、その和を求めよ。 1・4,2・5,3・6,・・・・, n(n+3) という問題で回答は 1/3n(n+1)(n+5) となるんですが、私の計算は Σk(k+3)=Σk^+3Σk =1/6n(n+1)(2n+1)+1/2n(n+1) =1/6n(n+1)(2n+3)+2/3n(n+1) =1/6n(n+1)<(2n+3)+9>     =1/3n(n+1)(n+6) になってしまうんです。 どこがつまずいているのか 教えて頂けると嬉しいです。 もうひとつ、違う問題なんですが、 次の数列の初項から第n項までの和Snを求めよ 1・1,2・3,3・5,4・7,・・・・ この解答は 1/6n(n+1)(4n-1) となるんですが、全く見当がつきません・・・。 どちらか一方でも構いませんので、 教えて下さい。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • you0430
  • ベストアンサー率28% (12/42)

すいませんが、僕の頭では質問者さんの計算方法がどのように導かれたのかわかりかねます。 よって、とりあえず解答式書いてみますね。 (1)Σk(k+3)=Σk^2+3Σk  ={n(n+1)(2n+1)}/6+3{n(n+1)}/2  ={n(n+1)/6}*{(2n+1)+3*3}  =答の式 (2)基本的に(1)と同じです。数列の第n項がn(2n+1)になっているのは明らかなので、Snは  Sn=Σk(2k+1)  あとの計算は省略です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すみません、打ち間違いで本当はこうです。 Σk(k+3)=Σk^+3Σk =1/6n(n+1)(2n+1)+3×1/2n(n+1) =1/6n(n+1)(2n+3)+3/2n(n+1) =1/6n(n+1)<(2n+3)+9> =1/3n(n+1)(n+6) でも、you0430さんのおかげで正しく解けました! すごく嬉しいです! 本当にありがとうございました。

その他の回答 (2)

  • 回答No.3
  • you0430
  • ベストアンサー率28% (12/42)

(2)はn(2n-1)ですね。すいません。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • inayou
  • ベストアンサー率30% (7/23)

>=1/6n(n+1)(2n+1)+1/2n(n+1) のところで1/2n(n+1)に3をかけていないのが原因だと思います。 また、 >次の数列の初項から第n項までの和Snを求めよ >1・1,2・3,3・5,4・7,・・・・ では、この数列の第k項は k*(2*k-1) となるのでこれで計算できるとおもいます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

解法が分かりました。 k*(2*k-1) で解いてみると上手くいきました。 ありがとうございました!! 数学は大の苦手だけど頑張ります!

質問者からの補足

すいません。打ち間違えました。正しくは、 Σk(k+3)=Σk^+3Σk =1/6n(n+1)(2n+1)+3×1/2n(n+1) =1/6n(n+1)(2n+3)+3/2n(n+1) =1/6n(n+1)<(2n+3)+9> =1/3n(n+1)(n+6) です。もう一度ご指導お願いしますm(_ _)m

関連するQ&A

  • 数Bの数列

    今日も数Bをやっていて、分からない事が 多々あったので、教えて下さい。 (1)問 次の数列の第n項,および初項から    第n項までの和を求めよ。    (an)1,3,6,10,15,21,・・・・・・  (bn)2, 3, 4, 5, 6,・・・・・    bn = n+1 n>=2のとき    an=1 + Σ(k+1) =1 + 1/2(n-1)n + (n-1)  ここからどう計算したら良いのか分かりません  解答はan=1/2n(n+1)です。  その後の初項から第n項までの和は計算は  できましたので、説明はいらないです。 (2)問 次の数列の第n項を求めよ。    1, 1+2, 1+2+4, 1+2+4+8, ・・・・・・    第n項は 2(nの2乗)-1  となるんですが、どうすればそう  求められるんですか?  私は解答を見るまで全く見当がつきません。 (3)問  次の数列の第n項,および初項から     第n項までの和を求めよ。   0.9, 0.99, 0.999, 0.9999,・・・・・・   9(1/10+1/10<2乗>+1/10<3乗>+1/10<4乗>+・・・+1/10<n乗>) までは分かるんですが、次に  1-(1/10)<n乗> に何でなんでなるのかよく分かりません。 そのあとのΣの計算も分かりません・・・・。 3問もつらつらと並べてしまいましたが、 どれかひとつでも 教えて頂けると嬉しいです。 見にくいですが、宜しくお願いいます。

  • 数列です

    1,1+2,1+2+3,……,1+2+3+……+n,…… という数列があり、 (1)第k項をkの式で表せ。 (2)初項から第項までの和Snを求めよ。です (1)は普通に考えて連続する自然数の和 n/2(n+1)で解決したのですが…問題は(2)でして自分の回答を書くので間違えているところがあれば指摘をお願いします。 ※Σの正しい書き方がわからないのでここではΣの上の式をn-1で下の式をk=1として省略します。すいません まず1,1+2,1+2+3,……,1+2+3+……+n,……をAnとして Anの初項から第6項までを1,3,6,10,15,21と求めます。 次にSnの初項から第5項までを1,4,10,20,35と求め、 Snの階差数列Bnの初項から第4項までを3,6,10,15を求め、 さらにSnの第2階差数列Cnの初項から第3項までを3,4,5と求めることができます。 ここでCnの一般項{Cn}=k+2 Bn=B1+Σ(k+2)=n^2/2+3n/2+1 よってBnの一般項{Bn}=n^2/2+3n/2+1 したがって同様に{Sn}を求めます。 Sn=S1+Σ(k^2/2+3n/2+1)=n/6(n+1)(n+2)となります。 最終的な答えは合っているのですが途中経過が一切書かれてなく合っているか不安です。 あと、もっとスマートに解ける方法がありましたら是非教えていただきたいです。 お願いします。

  • 数学Bの数列の問題です。

    【問題】 等比数列{1,25,25^2,25^3,25^4,……}の初項から第n項までの和は,等比数列{1/3,2/3,3/3,4/3,5/3,……}の初項から第何項までの和に等しいか。nの式で答えよ。 [自分なりの解答] まず等比数列の一般項をan=25^(n-1)と表す。 次に等差数列の一般項をbm=(1/3)mと表す。 そして和の公式で それぞれSn(和),Sm(和)を出してイコールで結んでみたのですが…^^; できないんですよ^^; これでいいのか?という答えになってしまって…。 たぶんやり方が間違っているので 解き方を教えてください。 よろしくお願いします。

  • 数学B 数列

    次の数列の第k項と、初項から第n項までの和をもとめよ。 (1)1*n , 3*(n-1) , 5*(n-2) , ・・・ , (2n-3)*2 , (2n-1)*1 この問題のやり方は分かります。 先生が説明した通りにやれば答えだけはでます。 しかし、理屈が分かりません。 初項にnがない、たとえば 2 , 2+4 , 2+4+6 , ・・・ の場合 第n項は、初項が2、末項2n、項数n の等差数列だから 一般項=n/2(2+2n) です。 これをシグマを使って計算します。 しかし、数列自体にnが入っていると 一般項であるn項を求めようとしても、うまくいきません。(初項がn、公差が-1だから、一般項=n+(n-1)*(-1)=1となってしまい、一般項でなくなってしまう) 先生の説明は 1*n や 3*(n-1) の*のところで切って、それぞれの一般項をかける。つまり、 *の左側は1 , 3 , 5・・・の初項が1、公差が2の数列だから、2k-1 *の右側はn , (n-1) , (n-2) ・・・の初項がn、公差が-1の数列だから、n-k+1 これらをかけて、(2k-1)(n-k+1) = -2k^2+2kn+3k-n-1 これが一般項(k項) これをシグマで計算すると、初項からn項までの和になる。 です。 この問題のkとかnとかの役割というか、文字自体の意味もよくわかりません。 kというのはn個ある項のうちの何項目かという意味ですか? なぜ一般項どうしをかけたら、数列の一般項になるのですか? 文章まとまってなくてすみません。 この問題の文字の意味から最後まで細かく説明をお願いします。 分からなかった部分は捕捉します。

  • 高2の数学で数列がわかりません

    数学の問題です。 数列2/3,2/5.4/5,2/7,4/7,6/7,2/9,4/9,6/9,8/9,2/11・・・・・において (1)4/15はこの数列の第何項か。 (2)この数列の第100項の数は何か。 a1=4,an+1=3an+2^3(n=1,2,3,・・・・)で定めらた数列 {an}の一般項を求めよ。 次の数列の和を求めよ。 (1)1・n+2・(n-1)+3・(n-2)+・・・・・+n・1 (2)7+77+777+7777+・・・・・・+777・・・77 777+77はn個とする 次の和を求めよ。 (1)n Σ1/(2k-1)(2k+1) k=1 (2)n Σ1/k(k+1)(k+2) k=1 a1=5,an+1=2an-3n+4(n-1,2,3,・・・・・・)で定められた数列{an}の一般項を求めよ。 a1=1,a2=1,an+2-an+1-2an=0(n=1,2,3,・・・・・)で定められた数列{an}の一般項を求めよ。 数列{an}の初項から第n項までの和Snが3Sn=4an-3N-1(n=1,2,3,・・・・・)を満たすとき (1)初項a1を求めよ。 (2)一般項anおよび和Snを求めよ。 数列11,1001,100001,10000001,・・・・・について (1)この数列の一般項anを求めよ。 (2)この数列の項はすべて11の倍数であることを証明せよ。 宿題ですが数列が全くわかりません。どうかお願いいたします。

  • 数列

    次の回答おねがいします 初項から第n項までの和Snが次の式で表される数列{An}がある。 Sn=2An+n^2-7 (n=1,2,3,・・・) (1)数列{Bn}の一般項を求めよ。 (2)数列{An}の一般項をもとめよ。 .

  • 数列について

    質問するのが初めてなのでもし使い方が間違っているようでしたら教えてください。 今プリントをやっていてわからないので解き方がわからないので誰か教えてください。 問題は 数列{an}の初項から第n項までの和Snが次のように与えられているとき、一般項anを求めなさい。  Sn=n3(nの3乗)-3n+2 なのですが途中までやっても計算が合わないのですが誰か教えてください。

  • 等比数列の級数

    1、11、111、1111、・・・という数列の一般項と初項から第n項までの和Snを求める問題で、一般項は初項1、公比10の等比数列の和となっていることから、一般項が1/9(10^n-1)であることがわかりますが、    n Sn=Σ1/9(10^k-1)   k=1 式の展開で1/9{10(1-10^n)/(1-10)-n}と展開されているのですが、 分子の最初の10は公式から考えれば、初項の1ではないのでしょうか? どうして10となるのかわかりません。 どなたかお分かりになりますか?

  • 数列

    数列{ak}の初項から第n項までの和SnがSn=3n^2+4n+2(n=1,2,3,…) と表されている。 (1)一般項akを求めよ. (2)数列{(ak)^2}の初項から第n項までの和をnで表せ。 という問題で、 n=1のときa1=S1=9 n≧2のときan=Sn-S(n-1)で =(3n^2+4n+2)-{3(n-1)^2+4(n-1)+2} =6n+1 となったんですがn=1を代入したら7になり 成り立たなくなってしまいました、、 どうすればいいんでしょうか? あと(2)もアドバイスくださったらうれしいです。

  • 数列です

    数列 a[n]=3^(n-1)+1の初項から第n項までの和を求めなさい、という問題なのですが、この問題の解き方がわかりません。 解答には Σ[k=1,n]{3^(k-1)+1} =Σ[k=1,n]3^(k-1)+n =3^n-1/(3-1)+n =3^n/(2)+n-(1)/2 よってSn=3^n/(2)+n-(1)/2 とありました。 ですが、このシグマの解き方がわかりません。 3^(k-1)をどうしたらいいのか教えてください 乗数が、定数、二乗、三乗とかならわかるのですが、 この場合はどうやって解くのでしょうか?