• ベストアンサー

螺線(らせん)の長さ(ピッチ)と半径の関係式について

螺線の方向をz軸、半径方向をx、y軸として一定長の螺線をz軸方向に引っ張って伸ばした場合、半径(r)は、短くなり、反対にピッチl(エル)は長くなります。この半径とピッチの関係式について教えてください。  なお、ピッチlとは螺線がx-y平面で見たとき、1回転するときのz軸方向の距離です。

noname#11257
noname#11257

質問者が選んだベストアンサー

  • ベストアンサー
  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.2

この条件だけでは決まりません。ここで言う「螺線」とは平面図形の螺旋(spiral)ではなく、つるまきばねの形(helix)のようです。  (1)半径rの筒に巻き付いていて、筒の軸にそって一周ごとにlだけ進むねじになっています。半径r、全長Lの円筒にN回巻き付いているこのようなバネを一本持って来ると、ばねを構成している長さはD=sqrt{(2πrN)^2 + L^2}で、つる自体は伸び縮みしないものとすればDは不変です。ここでピッチlはl=L/Nですね。  (2)さて、バネを引っ張って延ばすやりかたは一通りではない。2つの自由度があるんです。 (a) 頭としっぽをつまんで、これを長さLは同じのまま、頭だけをz軸の周りでねじることができる。こうすると当然半径r、ピッチlも変わります。もともとN回巻き付いていたのが、N’回になったとすると、D=sqrt{(2πrN)^2 + L^2}=sqrt{(2πr’N’)^2 + L^2}という関係式を満たすようにrがr’に変化します。そして今度のピッチl’はl’=L/N’ですね。 (b)次に巻き付き回数を維持したまま、ぐいと引っ張って、全長をL’に変化させることができる。するとD=sqrt{(2πrN)^2 + L^2}=sqrt{(2πr’N’)^2 + L^2}=sqrt{(2πr”N’)^2 + L’^2}という関係式を満たすように、半径がr”に変化する。今度のピッチl”はl”=L’/N’になります。 (3) 実際の鋼鉄製のバネでも、端が自由に回転するようになっている(Nを変えられる)場合と、Nが不変の場合とでは振る舞いが違います。前者の場合、バネを作っている針金に掛かる曲げと捻れ(バネの巻き付きではありません)のエネルギーの和が最小になるように落ち着きます。「でも後者なら、半径は一意的に決められる」と思ったら大間違いで、バネの半径が何処でも同じ、というのはエネルギー的に最小ではない。むしろこっちの方が解析が難しいです。ここから先は機械工学の教科書を見た方が良いでしょう。

noname#11257
質問者

お礼

stomachmanさん お礼が大変遅くなり申し訳ありませんでした。いろいろ忙しくて検討する時間がなく失礼しました。  さて、stomachmanさんのご回答は、大変わかりやすく理解することが出来ました。ありがとうございました。螺線ということでむずかしく考えてしまいましたが、stomachmanさんの言われるとおり、展開すれば、簡単なピタゴラスの定理になるのですね。もちろん、捻れとか、回転を与えれば複雑な解析が必要になると思われますが、今回は、単純な1次解が欲しかったものですから、これで十分です。本当にありがとうございました。  では、今後ともよろしくお願いいたします。                       tn238

その他の回答 (1)

  • vmlinuz
  • ベストアンサー率30% (4/13)
回答No.1

角度を t とすれば、 dx/dt = cos t, dy/dt = sin t, dz/dt = t l / 2π です。これを基にして螺旋の長さ L を計算すると L = ∫√{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2} dt です (積分範囲は 0 から 2π)。これを計算すると L = 4π(r^2 + l t / 2π)^(3/2) / 3l のようになるでしょう。(計算あってるか???)

noname#11257
質問者

お礼

vmlinuzさん  お礼が大変遅くなり申し訳ありませんでした。いろいろ忙しくて検討する時間がなく失礼しました。  ご回答ありがとうございました。 さて、ご回答についてですが、次の点がよく理解出来ませんでした。 3次元空間での原点からの角度をtとすれば、dtも3次元なので   dx/dt=cost というように単純には表現できないのではないかと思います。dtのx-y平面への投影長をdt'として   dx/dt'=cos(π/2-t) としなければならないのではないか、したがって、dtとdt'の関係も規定しないといけないと思われますので、ちょっと複雑になると思います。  小生の間違いかも知れませんので、また、ご教示いただければ幸いです。  では、今後ともよろしくお願い申し上げます。                         tn238

関連するQ&A

  • 螺線(らせん)の横から見た投影面積について

     半径rの鉄線を使った半径R(鉄線の中心が描く螺線の半径)のコイルが床の上に水平に置いてある。このコイルの一端を固定し、他端を回転なしで横方向(螺線の軸方向)に引っ張り、そのピッチ(コイルの山から山の長さ)がPとなった時、横方向から見たコイルの1ピッチ分の投影面積は数式で表すとどうなるでしょうか。  また、床面からの高さがhの水平線から上の部分に出るコイルの、やはり横方向から見た1ピッチ内の投影面積は、どうなるでしょうか。  ただしR+r≦h≦2(R+r)とします。  また、鉄線は、コイルの軸方向に伸ばしても、rは一定とします。 以上についてご教示ください。

  • 球面上の螺旋計算方法 (未解決で再度ご質問します)

    原点を中心とする半径rの球面 xy平面上にある(0、0)、(0、-r)の直線をz軸方向にz=r(球面のてっぺん)までα°回転させながら伸ばし曲面を描写 球面が曲面で分断される曲線をxy平面上に投影 yz平面上で見るθ=90-180°の範囲において定義される x及びyを求める式がわかる方、ご教授お願いいたします。 昨日もご質問に対して、ご回答を頂きましたが私の知恵不足で解決には至りませんでした。 工作機械のマクロプログラミングに際して計算方法の理解が必要になっています。 何卒宜しくお願いいたします。

  • コイルの問題です

    問題は z軸方向に一定の磁場Hがある。XY平面上に原点を中心とした半径rの円形のコイルを設置し、Y軸を軸としてコイルを1秒にn回転させた。コイルに発生する誘導電流を求めよ。コイルの電気抵抗をRとする。 です。 どなたか、やり方を教えてください。

  • 最小回転半径の中身

    自動車工学の最小回転半径の下記公式について意味が理解できないので どなたか教えてください。 R=(L/Sinθ1+√(L^2+(L/Tan^2+Tf)^2)/2 R:最小回転半径 L:ホイールベース Tf:トレッド θ1:外輪転蛇角 θ2:内輪転蛇角 単純に三平方の定理で考えると R=√{(L+y)^2+(Tf+x)^2}ですが y:回転中心~後輪の距離トレッド方向 x:回転中心~後輪の距離ホイールベース方向 他に考えられる式を代入しようとしてもxとyが残ってきてしまいます。 勿論、xとyは仮想で置いているので値は不明とします。 お手数ですがどなたか何故この式になるのか分かりやすく教えてください。

  • 応用電磁気学 ローレンツの式などの問題

    応用電磁気学 ローレンツの式などの問題 (1)Z方向の一様な磁場の中を、x方向に速度Vで進む電子の受ける力の向きをローレンツ力の式から求めよ。 (2)この磁界内で磁界方向の速度成分Vz、磁界に直角方向の成分Vrをもつ電子の運動は、らせん運動になる。xy平面に投射した円運動の軌道半径rと角速度ωと周期Tを求めよ。 (3)Vzが一定であることから、らせん運動のピッチLを求めよ。 よろしくです

  • 空間の座標について

    空間図形の座標なんですが、 進行方向に対して、左右方向がX軸 進行方向をY軸、深度をZ軸としたX-Y-Z空間があります。 X-Y平面でY軸を0とした時の角度をβ X-Y平面とZ軸と方向との角度をα 原点から(x、y、z)までの距離をLとする このとき、点(x、y、z)をもとめるにはどうしたらよいのでしょうか? ちなみにx=y=zは0ではありません できれば三角関数を使った解法を教えてください ちなみに (x、y、z)=(Lsinβ、Lcosβsinα、Lcosβsinα) という答えらしいんですが、さっぱりわかりません・・ って、うまくかけてない・・・

  • 座標変換

    3次元(x,y,z)物体の回転でよくx軸、y軸、z軸で回転がありますが、xy平面との角度φを回転させたいときはどうすればいいでしょうか? xy平面との角度をφ回転させた後の座標(X,Y,Z)はどうなるのでしょうか? また X     x Y = T・y Z     z このような行列Tが存在するのでしょうか?

  • 平面束

    空間において、(直線1の方程式)+k(直線2の方程式)=0が平面を表すことが疑問なので質問します。 1問目は、xyz空間において、直線x+y=4、z=1を含む平面αと、球x^2+y^2+z^4=4との交わりの半径が1の円であるとき、αの方程式を求めよという問題で、 平面z=1と球面との交わりは半径√3の円だから、平面z=1は平面αではない。そこで、αの方程式は、x+y-4+k(z-1)=0・・・(1)と表すことができる。と解説に書いてあるのですが、(直線1の方程式)+k(直線2の方程式)=0は平面では、直線1と直線2の交点を通るすべての直線(直線2は除く)を表すので、空間でも(1)は直線x+y-4=0とz-1=0との交点を通るすべての直線を表すと思ったのですが、なぜ平面αを表すのでしょうか?自分なりのこじつけをすると、x,y,zを含む方程式だから、(1)は平面を表すとか、直線x+y-4=0とz-1=0は平行で交わることはない、両方を含むのは平面になるからと思いました。 また、2問目は、直線L:(x-1)/2=y+2=1-zを含み、 点A(1,2,-1)を通る平面αの方程式を求めよ、という問題で 直線Lを(x-1)/2=y+2とy+2=1-zに分けて、x-2y-5=0とy+z+1=0とし、ゆえにL上の点(x,y,z)はすべて(x-2y-5)+k(y+z+1)=0・・・(2)を満たす、すなわち、kがどんな実数値をとっても、この方程式はLを含む平面を表すとかいてあるのですが、x-2y-5=0とy+z+1=0がそれぞれz軸に平行な平面とx軸に平行な平面を表せば、(2)はLを含む平面を表すことは納得できるのですが、x-2y-5=0とy+z+1=0がxy平面上の直線とyz平面上の直線ととらえてしまうと、1問目同様に平面を表すことが疑問になります。 どなたか、(直線1の方程式)+k(直線2の方程式)=0が平面を表すことを解説してくださいお願いします。

  • 3次元空間におけるアフィン変換について

    3次元空間で直線を軸とした回転運動している物体の座標の特定をしたいと考えています。 最終的にX、Y、Z軸を軸とする回転角度を得ることができればと思っています。 具体的に以下のような数学の問題があったとして、 どう解いていくかを経緯も含めて教えていただきたいのです。 [設問] 3次元空間に点A(x,y,z) = (0,0,0)と点B(100,-100,100)の2点がある。 また直線ABに含まれない点C(50,-50,0)がある。 点Cを含み直線ABに直交する平面と直線ABとの交点をDとし 点Cが線分CDを半径として当該平面上の円を一定の速度で回転している。 このとき点Cの円周上の回転角度をaとする時、 点Cのx、Y、Z軸それぞれを軸とした回転角度をaを用いて表しなさい

  • 3次元ベクトル

    (x,y,z)の位置ベクトルをrとすると、 このベクトルをx軸方向から見たときにα、y軸方向から見たときβ、回転させたときのベクトルの成分はどうなるのでしょうか?