• ベストアンサー
  • 困ってます

数学 三角比について

Q三角比の性質を利用して、次の式の値を求めよ。 (1)sin^2 80°+cos^2 80° (2)sin10°cos80°+ cos10°sin80° (3)sin20°-cos70° (4)tan20°tan30°tan60°tan70° 上の問題なのですが、答えは (1),(2), (4)が1で、(3)が0なのはなんとなく 分かるのですが、途中の説明がどういう風に 説明したら良いのかわかりません(>_<)

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数223
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • postro
  • ベストアンサー率43% (156/357)

(sinθ)^2+(cosθ)^2=1 は重要公式です。θがなんであれ成り立ちます。当然80°でも成り立ちます。 cos80°=cos(90-10)=sin10 sin80°=sin(90-10)=cos10 これらも基本公式です cos70°=cos(90-20)=sin20 tan60°=tan(90-30)=1/tan30 tan70=tan(90-20)=1/tan20

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます^^ θを今習っているのですが、全くといって良いほど 分からなくて(>_<) 本当にありがとうございました☆

その他の回答 (2)

  • 回答No.2
  • info22
  • ベストアンサー率55% (2225/4034)

どこかの問題みたいですね。 質問者さんの回答が何もないですね。 丸投げはマナー違反で質問が削除されてしまいます。 ヒント)直角三角形の 3平方の定理(ピタゴラスの定理)を利用したり 各辺の比を文字でおいて各式をすべて文字で置き換え整理してみてください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます^^ 一番はsin^2A+cos^2A=1の式を利用して 答えたら良いのかな!?と思っていたのですが 数学がほとんど分からなくて、困っていたんです。 一度考え直してみます。 ありがとうございました☆

  • 回答No.1
  • shkwta
  • ベストアンサー率52% (966/1825)

(2)(3)(4)は、 cosθ=sin(90°-θ) sinθ=cos(90°-θ) の応用です。tanθは、sinθ/cosθとして考えます。 これらを使って、sinをcosに変えたりcosをsinに変えたりすればいいのです。 補足に、やってみた式変形を書いてみてください。それを見て、何かアドバイスできるかもしれません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

早い回答ありがとうございます^^ 数学が今、ほとんど分からなくて(>_<) 一度shkwtaさんの意見を参考にじっくり 考えてみます。  本当にありがとうございました☆

関連するQ&A

  • 数学の三角比に関する問題です。教えてください!

    数学の三角比に関する問題です。教えてください! (1)cosθ+cos^2θ=1のとき、cosθ、sin^2θ+2sin^4θを求めよ。 (2)sinθ+cosθ=1/√5のとき、sinθcosθ、tanθ+1/tanθ、tan^3θ+1/tan^3θの値を求めよ。 この二問です。よろしくお願いします!<(_ _)>

  • 数学の三角比系でわからない問題があるので得意な方教えて下さい。

    数学の三角比系でわからない問題があるので得意な方教えて下さい。 ?0≦θ≦180とする。 sinθ=1/3の時、cosθとtanθの値を求めよ。θが第1象限の場合と第2象限の場合に分けて答えよ。 ?0≦θ≦180とする。 tanθ=-√2の時、cosθとtanθの値を求めよ。?山から水平に200?離れた地点での仰角が60゜であった。山の高さは約何?か。ただし√3=1,73とする。

  • 三角比(初期の問題)

    こんばんは。 現在高校1年生の者です。 先日、授業で三角比に入りました。 そこでさっそく宿題をだされたのですが、 どうもよくわかりません; 今現在習った公式は (1) sin^2θ+cos^2θ=1 (2) tanθ=sinθ/cosθ (3) 1+tan^2θ=1/cos^2θ (4) sin(90°-θ)=cosθ (5) cos(90°-θ)=sinθ (6) tan(90°-θ)=1/tanθ だけです。 解らない問題は 次の式を簡単にせよ。 tan^2θ-tan^2θsin^2θ-sin^2θ というものです。 自分なりに考えた式は、 tan^2θ-tan^2θsin^2θ-sin^2θ =tan^2θ/sin^2θ-tan^2θ-1 =1/cos^2θ-1/cos^2θ =0 ですが、どうも合っていない気がします・・・; もしよろしければこの答えで合っているかどうかや 解き方のアドバイスなど教えてください。 お願い致します。

  • 鋭角の三角比

    次の三角比を鋭角の三角比で表しなさい 1 sin140° 2 cos105° 3 tan130° 1は180-140=sin40° 2は180-105=cos75° 3は180-130=tan50° これであってるでしょうか?

  • 三角比の値の問題です。

    次の三角比の値をそれぞれ求め、記号で答えなさい。 (1) cos A = 3/5 のとき ( 15 ) sin A ( 16 ) tan A (2) sin A = 1/2 のとき ( 17 ) cos A ( 18 ) tan A *3/5 (5分の3) 1/2 (2分の1) 分かる方教えていただけるとありがたいです。

  • 三角比の利用

    cosθ+cosθ^2=1の時、sinθ^2+sinθ^4の値を求めよ。 sinθ-cosθ=1/√2の時、tanθ^3+1/tanθ^3の値を求めよ。 という問題が解けません。 三角比の相互関係を使って解くそうなのですが、どのタイミングでどの公式を使うのかが分かりません。どの様に変形するかを明記していただけたら嬉しいです。 よろしくお願いします。

  • 三角比がわかりません。助けてください。

    僕が分からないのは、θが0度、90度、180度の時、それぞれの三角比が sin0°=0、cos0°=1、tan0°=0 sin90°=1、cos90°=0、tan90°の値は定義されない。 sin180°=0、cos180°=-1、tan180°=0 となることがさっぱりイメージが湧きません。 先生に聞いたところ「定義だから」と言われました。 数学的な根拠が知りたいです。お願いします。

  • 三角比について。

    三角比について。 よく理解していない者が質問するので分かりにくいかと思いますが・・・。 角0°と角90°に関するsin,cos,tanについてなのですが、 まず一つ目に、角0°と角90°の図形は、それぞれ線分と四角形になってしまい、三角形ではなくなってしまうのではないでしょうか? 次にsin0°=0、cos0°=1、tan0°=0、sin90°=1、cos90°=0、tan90°=無し という値らしいのですが、 何故「1」や「0」という値が出るのか、「0」と「無し」というのは何が違うのか、という疑問が沸きました。 分かる方、よろしくお願いいたします。

  • 三角比の問題

    三角比の問題で、わからなくて困っています。 三角形において、次の等式が成り立つことを証明しなさい。 (1)sin(B+C)/(2)=cos(A)/(2) (2)tan(A)/(2)tan(B+C)/(2)=1 わかりません。お願いします。

  • 三角比について

    まだ三角比習いたてなのですが 既について行けなくなっています…(1対1、50分授業を2回やりました) 1回目の授業でsin,cos,tanの説明と sin(90°-θ)=cosθ…(他二つ) tanθ=sinθ/cosθ…(他二つ) を受けて 2回目は少し復習と 鈍角の三角比というところをやりました。 (半円上でのsin,cos,tanみたいな) 最初のほうで、自分の思っていたsinθやcosθが間違っていたという事に気づき、 それ以降は、そこが間違っていたので、全然分からず、30%ぐらいしか理解してないまま終わりました。 この塾での授業は10回程受けていますが 使っている教科書兼問題集みたいなのが 基礎学習のページとチェックテストのページがあり、 基礎学習のページは穴埋めで覚えていく感じなのですが、穴埋めの答えはページのすぐ下にありチラチラ見えて気になるのですが 大体、穴埋めしてみてと言われても分からないので、答えの数値を見て、そこから考えるという方法でしか穴埋めできていません。(9割方先に答えを見ています。ただ、その上でなんでその答えになるか分からない場合は、穴埋めせず、いろいろ考えて…という感じですが) ちなみにネット通信型の授業です。(Webカメラと手書きボードを通じての) で、今日ならった鈍角の三角比のところで 授業が終わった後、母と1時間近くあーだこーだやって やっと疑問が解けて、今日やった2回目の授業の事が8割近く理解できるところまでこれたのですが まだ分からないのが cos90°=0 cos180°=-1 tan180°=0 です。 母は文系で、ここら辺の単元は既に分かる範囲を超えているのですが 頭良いほうなので、私が使っている教材を見て、理解して、私に教えてくれるのですが、この部分は分からないみたいで。 その前のsin0°=0、cos0°=1というのはやっと理解できました。 直線と考えた場合、 その小単元?で使ってた図をもとに 半径rの三角形で考えて(その図は、90°以上のθで半円上で…って感じです) 授業の時に先生が言ってくれた高さ(図上でx)が無くなるから0って考えるというのが大まかに分かってた感じだったのが、母と話していて、きっちり分かりました。 高さが無くなるので、底辺と斜辺が一直線になって、だから、底辺も斜辺もrで sinは高さを含むから0で、cosは高さを含まない底辺と斜辺だから1 というのは分かりました。 ただcos90°以降のが母も私も図にすらかけない状態で… θ=0°の時(r,0) θ=90°の時(0,r) θ=180°の時(-r,0) という図は先生が説明してくださったのですが、座標という意味では、r,0や0,rなどは分かるのですが、 θが…という時という意味では分かっていなかったのかもしれません。 cos90°=0は0/r=0 cos180°=-1は-r/r=-1 tan180°=0は0/-r=0 の図の想像が全くつきません。 0/rが0になるとか-r/r=-1になるとかの、式は分かりますが cos90°が0/rとかは分かりませんし、図も浮かびません。 この三つの式について教えて欲しいです。 これは少し無駄話かもしれませんが 今回の授業で割り算までできなくなっていた自分に気が付いてショックで… 0÷8が0なのは分かるのですが、色々割り算とかやってて、tan(90°-θ)=1/tanθの検算してる時に 8÷0が分からなくなってしまって…。分からないというよりも忘れてしまったんでしょうが、 思い返してみれば小学校の頃も割り算で後に0がくるのはいっつもその時思った答えを書いてました。(答え8の時もあれば0の時もある感じで…) 三角比でも sinやcos,tanの意味を理解するのにかなり時間がかかりました。