• 締切済み

距離空間の完備

yumisamisiidesuの回答

回答No.1

完備の普通の定義は質問者様の言うとおりでいいかもしれませんが、それを証明しろという問題があるなら、その教科書で特別に別の定義があるかもしれません 完備の場合はどうか分りませんが、たまに定義の仕方がいくつもあるものがあります (ex 実数の連続性の公理など)

関連するQ&A

  • C^nがヒルベルト空間であることの証明

    C^nを複素数のn個の項x=(α_1,…,α_n)の空間とする。 x=(α_1,…,α_n)、y=(β_1,…,β_n)をC^nの元とするとき、内積を (x,y)=Σ^(n) _(i=1)α_i・(*β_i) (*β_iはβ_iの共役複素数) と定義する。 このとき、C^nがヒルベルト空間であることを証明せよという問題がわかりません。 教科書にヒルベルト空間の定義が「内積空間で(x,x)=||x||^2によりノルムが定義された完備な空間」と書いてあったので、C^nが内積空間であることは示せたのですが、完備である(コーシー列が収束する)ことが示せません。 C^nからどのようにコーシー列をとって収束することを示せばよいのでしょうか? ちなみに教科書には X:ノルム {x_n}をXの元の数列とし、Xのある元xがあって ||x_n-x||→0 (n→∞) となるとき{x_n}はxに収束する とありました。 よろしくお願いします。

  • 距離空間における同値について

    距離空間の問題でわからないものがあります↓ d1(x,y)=Σ(i=1~n)|x(i)-y(i)|とする。 (X,d)を距離空間とする時、 d'(x,y)=d(x,y)/(1+d(x,y)) と定義すると(X,d')も距離空間である。 d1とd'は同値ではないことを示せ。 という問題です。 すこし表示がわかりにくいんですけど、x(i)っていうのはxのi番目のものって意味のつもりです。 ちなみに同値っていうのは 距離関数δ,ζに対してk≧1が存在し、 (1/k)δ≦ζ≦kδとなる と定義されています。 自分ではd'とd1が同値であることを仮定して矛盾を導くのかな?と考えたんですが、矛盾が導けません。 教えてください!

  • 非加算個の完備距離空間の直積空間が完備距離空間になるための条件を知って

    非加算個の完備距離空間の直積空間が完備距離空間になるための条件を知っている人がいたら、教えて下さい。

  • 距離空間について

    距離空間についての問題です。 R^n∋x,y x=(x1,…,xn),y=(y1,…,yn) d_1(x,y)=Σ|x_i-y_i| は距離関数として与えられています。 問題:R^n∋a,b、a≠bとする。 n=2のとき、{x∈R^n:d_1(a,x)+d_1(x,b)=d_1(a,b)}は、どのような集合か。 d_1(a,x)+d_1(x,b)=d_1(a,b)より、 xは線分ab上の点なのではないかと予想しています。 しかしこれをどのように証明すればよいのかわかりません。 アドバイス等がほしいです。 よろしくお願いします。

  • 大学数学、位相、距離空間について

    次の問題が分かりません。 距離空間(X,d)の部分集合Fについて、次の条件(1)と(2)は同値であることを示せ。 (1)Fは閉集合である。 (2)Fの点列{x_n}がx∈Xに収束するならばx∈F 位相が苦手でほとんどわからないので、分かる方よろしくお願いします。

  • 同値な距離??

    (R^2,d)をユークリッド空間とする。 x=(x1,x2) y=(y1,y2)∈R^2 にたいして d'(x,y)=d(x,0)+d(y,0) x1y2≠x2y1 のとき      d(x,y)     x1y2=x2y1 のとき とおく。 このときd'はR^2の距離であるが、dと同値ではない事を示せ。 d'がR^2の距離であることは示せたのですが同値な距離というのが出来なくて… 位相空間Q(R^2,d)について Q(R^2,d)⊂Q(R^2,d') Q(R^2,d')⊂Q(R^2,d) を示せれば同値であるのでどちらかが成り立たない場合を示せればいいと分かったのですが、 どう示せばいいか分かりません… x1y2≠x2y1 のときを考える。 d(x,y)<d(x,0)+d(y,0)=d'(x,y) となるので実数の連続性から d(x,y)<ε<d'(x,y) となるεが取れる(ε>0) ここでU∈Q(R^2,d)を取ると ∃(ε>0) s.t. Vε(x,d)⊂U しかし Vε(x,d')⊃Vε(x,d)⊂U となるのでU∈Q(R^2,d')とならない よって同値ではない。 どうでしょうか…全然自信がありません( ´・ω・`)

  • 距離空間でどのように開集合族をとれば位相空間になる?

    よろしくお願い致します。 距離空間Xはその距離によって定められる開集合族をGとすればXは位相空間になると本に書いてあったのですが いまいち文意が分かりません。 距離d:X^2→Rに於いて、具体的にどのようにGを定めればいいのでしょうか?

  • 距離空間におけるコンパクト性

    距離空間において、コンパクト集合と点列コンパクト集合が同値であることの証明をできるだけ理解したいのですが、参考書のの証明がイマイチ理解できません。 (参考書の証明) (1) コンパクト距離空間Xの任意の点列{x_n}n=1,2,…が収束部分列をもつことを示す。 この点列に対して、A_k={x_k,x_k+1,…}とおき、その閉包(A_k)'全体のなす集合族{(A_k)'}を考える。 {(A_k)'}の各元(A_k)'は空でない閉集合で、単調減少(A_1)'⊃(A_2)'⊃…(A_k)'⊃…であるから有限交叉性をもつ。したがって、Xのコンパクト性より共通部分(A_k)'は空でない。共通部分(A_k)'から1点xを選べば、xは(A_1)'に属するからd(x_(n_k),x)≦1/kなるx_(n_k)∈A_kが存在する。このとき、n_k≧kより数列{n_k}は異なる自数数を無限個含むから、{x_(n_k)}は{x_n}の部分列であり、また明らかにxに収束する。よって、点列{x_n}は収束部分列をもつ。 (2) 距離空間Xが点列コンパクトであると仮定し、Xの任意の開被覆{V_λ}が有限部分被覆をもつことを言う。最初に、{V_λ}に対して、ε>0が存在して、任意のx∈Xのε近傍U(x;ε)が{V_λ}のどれかの元V_λに含まれることを示す。このようなεを開被覆{V_λ}のルベーグ数とよぶ。ルベーグ数が存在しないならば、各kに対し、その1/k近傍がどの{V_λ}の元にも含まれないような点x_k∈Xをとることができる。こうして得られた点列{x_k}は、Xの点列コンパクト性より収束部分列をもつ。その極限をx_∞とおくと、{V_λ}はXの被覆であるから適当なV_λ∈{V_λ}がx_∞を含む。V_λは開集合であるから、μ>0が存在してU(x_∞;μ)⊂V_λ。十分大きいk'をとれば、1/k'<μ/2とd(x_k'、x_∞;μ)<μ/2とが同時に成り立つが、このときU(x_k';1/k')⊂U(x_∞;μ)⊂V_λとなって点列{x_k}のとりかたに矛盾する。すなわちルベーグ数の存在が示さfれた。さて開被覆{V_λ}が有限部分被覆を持たないとして矛盾を導く。{V_λ}に対するルベーグ数をεとし、これを用いてXの点列{x_n}を以下のように構成する。まず任意のx_1∈Xを選ぶ。このとき、U(x_1;ε)を含むV_(λ1)∈{V_λ}が存在する。もし、X-V_(λ1)が空ならばXがV_(λ1)だけで覆われるからX-V_(λ1)≠φであり、点x_2∈、X-V_(λ1)を選ぶ事ができる。同様にU(x_2;ε)を含むV_(λ2)∈{V_λ}が存在するが、X-(V_(λ1)またはV_(λ2))はやはり空でない。よって、x_3∈X-(V_(λ1)またはV_(λ2))を選ぶ事ができる。この操作を繰りかえして得られた点列{x_n}はn>mに対してx_nはU(x_m;ε)に含まれない、すなわちd(x_n、x_m)≧εを満たすから収束部分列を含みえない。これはXが点列コンパクトであることに反し、矛盾が生じた。 (証明終わり) まず有限交叉性の全く意味がわかりません。 私は、点列コンパクトとコンパクトの定義を以下のように学習しています。 X:集合、P:開集合族 (X、P):位相空間 K⊂Xがコンパクト ⇔{U_λ}⊂Pかつ和集合U_λ⊃K(λ∈Λ)、この時、和集合U_(λ_k)⊃K(k=1→n)となるようなλ_1、…、λ_n∈Λが存在する。 K⊂Xが点列コンパクト ⇔K内の任意の無限点列{x_n}(n=1、2、…)がKの点に収束する部分列を持つ。 なるべく定義に従って、証明していきたいです。 どなたか、詳しく証明を解説してほしいです。 回答よろしくお願いします。

  • 商位相空間

    X=R^n+1-(0,0,…,0)のおいて(x0,…,xn)~(λx0,…,λxn)(λ≠0)により 関係~をX上に定義する。 (a)~が同値関係になることを示せ。 (b)商位相空間X/~をRP^nと表し、n次元実射影空間という。 RP^nがハウスドルフ空間であることを示せ。 (a)に関しては問題が曖昧な気がするのですが…。 これは (x0,…,xn)~(y0,…,yn)⇔∃λ≠0 s.t.(y0,…,yn)=(λx0,…,λxn) ということでいいのですか? (b)ですがハウスドルフ空間の定義は X上の任意の異なる二点x,y∈Xに対して二つの開集合U,Vで x∈U、y∈VかつU∩V=φとなるものが存在する。 ということですよね。 商位相空間X/~はどのような位相空間になるのでしょうか?

  • 距離空間の問題です。

    距離空間の問題です。 (X,d):距離空間 Bd1(p;r) = {x∈X|d(x,p)<r} (←開球体?) Bd2(p;r) = {x∈X|d(x,p)≦r} (←閉球体?) としたとき、Bd1(p;r)とBd2(p;r)の境界は共に {x∈X|d(x,p)=r} になることを示せ という問題です。解く方針としては A = Bd1(p;r)とすると X = Ai(Aの内部)∪Ae(Aの外部)∪∂A(Aの境界) からAiとAeを求めて、∂Aを導く Aは開集合より、Ai=A={x∈X|d(x,p)<r}...(1) X-A={x∈X|d(x,p)≧r}より Ae=(X-A)i=・・・={x∈X|d(x,p)>r}...(2) (1)(2)より ∂A={x∈X|d(x,p)=r} という感じで示そうとしたんですが (2)の・・・の部分がうまくできません どのように言えばいいんでしょうか? また、閉球体の方の示し方もお願いします