• ベストアンサー
  • すぐに回答を!

極限値

a>1,p>0で (1)lim x^n/a^x (n∈N) (x→∞) (2)lim x^p/a^x     (x→∞) この2つの問題がどういうふう極限値を求めたらいいか分かりません。“コーシーの平均値の定理”や“ロピタルの定理”を使って解くと思うんですが、どうしたらいいか分からないのでよろしくお願いしますm(_ _)m

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数353
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

ロピタルの定理を使ったら両方とも一発なんですけど 以後、x→∞は省略します。 (1) lim(x^n/a^x)=lim{n/(loga)}*{x^(n-1)/a^x}=lim{n(n-1)/(loga)^2}*{x^(n-2)/a^x}=…=lim{n!/(loga)^n}*{1/a^x}=0 (2) m-1<p≦mとなるようなmを考える lim(x^p/a^x)=lim{p/(loga)}*{x^(p-1)/a^x}=lim{p(p-1)/(loga)^2}*{x^(p-2)/a^x}=…=lim[{p(p-1)*…*(p-m+1)}/{(loga)^m}]*{x^(p-m)/a^x}=lim[{p(p-1)*…*(p-m+1)}/{(loga)^m}]*[1/{x^(m-p)}a^x]=0

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました(^^)助かりました。

関連するQ&A

  • 極限値を求める問題

    極限値の問題です。ロピタルの定理を使うというのですが、ロピタルの定理を使うところまで式を変形できません。わかる方いましたら、式を変形してください。よろしくお願いします。 lim[x→0]((a^x+b^x)/2)^(1/x)

  • 極限値の問題について

    極限値の問題について lim[x→∞]log x/x を、ロピタルの定理を使わない求め方が分かりません。何方か教えていただけないでしょうか?

  • 極限値、ロピタルの定理

    次の問題がわかりません。 lim[x→-∞]x(e^-x) の極限値を求めたいのですが、 =lim[x→-∞]x/(e^x)=-∞/0 ロピタルの定理より lim[x→-∞]1/(e^x)=1/0となって 答えの“-∞”がでないです・・・ どうやってとけばいいでしょうか?

  • 極限値

    こんにちは。今、極限値の勉強をしているのですが、いくつか不明な点があるので質問させて下さい。 まず、lim tan^-1*X/X の解き方の仮定を教えてください。      x→0 次に、x→+0はプラスがつく事により、問題の解き方の仮定でただの0とどう変わるんでしょうか。 最後に不定形の極限値はロピタルの定理を用いると簡単に解けますが、ただの極限値か、不定形の極限値だと簡単に見分ける方法はないでしょうか。 ご回答お願いします。

  • 有限の極限値

    lim[x→0][{log(cosx)+√(1+x^2)-1}/x^n] が0以外の有限の極限値を持つように自然数nを定め、その時の極限値を求めよ。 という問題です。 私は、√(1+x^2)をマクローリン展開し、 √(1+x^2)=1+(x^2)/2-(x^4)/8+0(x^6) (0(x)はランダウの記号) としてから、 lim[x→0][{log(cosx)+√(1+x^2)-1}/x^n] =lim[x→0]{-tanx/nx^(n-1)}+lim[x→0][{1+(x^2)/2-(x^4)/8+0(x^6)-1}/x^n] (ロピタルの定理を使いました) n=2のとき =-1/2+1/2 =0 と、題意にそぐわない結果となってしまいました。 どなたか、正答わかるお願いします。

  • 極限値

    極限値の問題で困っています。 lim(x→0) 1/x{(1/(x-1)^2) - 1} という問題なのですが、先頭の1/xがどうしても邪魔で、極限値が出せません。

  • 極限値の問題がよく分かりません・・・

    極限値の問題では(lim)どの時点で答えと決定してよいのか分かりません・・。何も変化させないままlimの下の数字を代入して、0/0ならロピタルの定理などを使って、答えを導くというのはなんとなく分かるのですが、何も変化させないままlimの下の数字を代入して、0/1や1/0になる時はそのまま答えを0として良いのでしょうか? (説明が下手でスイマセン・・・) また、 lim(X→0)X・logX の出し方が分かりません。 上の疑問と同じで、X・logXを何も変化しないまま0に近づけると(代入すると)答えは0になりますが、そのまま答えにして良いのでしょうか? それとも、logX/(1/X)に変化し、ロピタルの定理を使い、0と導くのでしょうか? どこで変化または微分(ロピタルの場合)をストップさせていいのかが、よく分かりません。 誰か教えて頂けないでしょうか? お願いします!

  • 極限値を求めたいのですが、教えてください

    次のような極限値を求める問題ですが、次の数列の収束・発散を調べ、収束する場合にはその極限値を求めよという問題です。   (1)lim(n→∞)  1+(-1)^n   (2)lim(n→∞)  √(n^2 +1) - √(n^2 -1)

  • 極限値について

    極限値について教えてください。 1、f(x)=1/xの極限値は存在しますか? 2、lim ax^2+bx/x-3 =12 が成り立つとき、a、bの値を求めよ。   x→3  という問題において、どうして「x→3のとき、分母が0に近づくから  極限値が存在するには分子も0に近づかなければいけない」  のでしょうか?   

  • 極限値を求める問題

    いつもみなさんの問題解決のためのアイデアに感心しております。 今日行き詰まった問題は、以下のものです。 極限値を求めよ lim[x→0](1/x - 1/sinx) 変形すると lim[x→0]((sinx-x)/xsinx) 0/0の形になるから先日教えていただいたロピタルの定理を使って上下を微分し、 lim[x→0](cosx/(sinx+xcosx)) さらに上下を微分し lim[x→0](-sinx/(cosx+cosx-xsinx)) と置き換えて 答え”0”で良いのでしょうか? よくご存じの方、”正解”がついていないので、ご教示をお願いします。

専門家に質問してみよう