• 締切済み

数(2)の図形と方程式で、逆手流の解法について

stomachmanの回答

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.3

逆手流?どこが?? 軌跡(奇跡じゃなくて!)というのは点の集合です。図形も点の集合。どっちも同じですね。 点の集合SはS={<u,v>| u,vに関するある性質}という形に書かれる訳で、「u,vに関するある性質」はこの問題では「点Q(u,v)が、求める図形上にあるための条件」に他なりません。これをx,yを使わずに表せという注文です。  さて、与えられている条件をきちんと書くと ∀u∀v(<u,v>∈S⇔u∈実数∧v∈実数∧∃x∃y (x∈実数∧y∈実数∧(ux-vy=y-v)∧(vx+uy=-x+u))) です。或いは S = {<u,v> | u∈実数∧v∈実数∧∃x∃y (x∈実数∧y∈実数∧(ux-vy=y-v)∧(vx+uy=-x+u))} と書いても同じですね。そして、「x,yを使わないで同じ集合Sを表せ」という問題です。  実数の対<U,V>を持ってきて、これが図形S中に含まれるかどうかを問う。つまり<U,V>∈Sかどうか。 これは∃x∃y ((Ux-Vy=y-V)∧(Vx+Uy=-x+U))であるかどうかを問うのと同値です。()内を満たす実数x,yが存在すれば<U,V>∈Sであり、存在しなければ<U,V>はSに含まれない。では「()内を満たす実数x,yが存在する」をU,Vだけを使ってどう表すか。  それだけのこと。まさしく正面攻撃。なんのひねりもありません。

関連するQ&A

  • 複素関数の質問です。

    問題の(1)と(2)はこれであっていますか? (3)と(4)が分からなかったので教えていただきたいです。 よろしくお願いします。 (1) f(z)=u(x,y)+iv(x,y)とする。 コーシーリーマンの関係式より ux=vy, uy=-vx-(1) またf(z~)=u(x,v)-iv(x,y)より ux=-vy, uy=vx よってux=uy=vx=vy=0となるので、u(x,y)とv(x,y)は定数となり、f(z)は定数。 (2) |f(z)|=√u^2(x,y)+v^2(x,y) g(x,y)=|f(z)|=√u^2(x,y)+v^2(x,y)とすると gx=(ux+uy)/g(x,y) gy=(vx+vy)/g(x,y) g(x,y)は定数なので ux=-uy, vx=-vy これらと(1)からux=uy=vx=vy=0となるので、u(x,y)とv(x,y)は定数となり、f(z)は定数。

  • 微分方程式のシャルピーの解法について

    シャルピーの解法に沿って2変数関数u=u(x,y)を含めた微分方程式F(x,y,u,p,q)=0 (p=∂u/∂x,q=∂u/∂y)の解を求める際に特性方程式{dx/(∂F/∂p)}={dy/(∂F/∂q)}=[du/{p(∂F/∂p)+q(∂F/∂q)}]=-[dp/{(∂F/∂x)+p(∂F/∂u)]=-[du/{(∂F/∂y)+q(∂F/∂u)}]というのがでてきますが、これを導く手順についていくつか分からない点があります。 手順1:pとqを共にx,y,uの関数で表し、p=∂u/∂x=p(x,y,u),q=∂u/∂y=q(x,y,u)とする。 ※質問ですがuはxとyの関数なので、xやyで偏微分すると同じくxとyの関数になると思うのですが、ここではあえてそのxとyの式を変形してu=(x,y)を入れ込むということでしょうか? 手順2:2変数関数u=u(x,y)の全微分duはdu=(∂u/∂x)dx+(∂u/∂y)dy=pdx+qdyとなり、これを変形するとpdx+qdy-du=0となる。この式を(1)とおく。(1)はu=u(x,y)-u=C [Cは任意定数でuは独立変数]の解を持つので、積分可能と言える。 ※質問ですが、"(1)が解u=u(x,y)-u=Cを持つ"というのは一体どうして分かるのでしょうか? また、その後に"積分可能と言える"とありますが、"微分方程式が解をもてば、その微分方程式が積分可能である"とも言えるのでしょうか? 手順2の続きです。 (1)は積分可能条件を満たすので、ベクトルA=[p,q,-1]とおくと、A・(rotA)=0を満たす。これを計算すると、-p(∂q/∂u)+q(∂p/∂u)-{(∂q/∂x)-(∂p/∂y)}=0という関係式が導ける。この式を(2)と置く。 手順3:p,qを求めるためにもう1つ関係式G(x,y,u,p,q)=b(bは定数)を用意する。ここでFもGもx,y,uの関数であることが言える。次に(2)の式を解くために必要な(∂q/∂u),(∂p/∂u),(∂q/∂x),(∂p/∂y)を得るためFとGをx,y,uでそれぞれ偏微分する。 まずxで偏微分すると、Fは(∂F/∂x)+(∂F/∂p)*(∂p/∂x)+(∂F/∂q)*(∂q/∂x)=0,Gは(∂G/∂x)+(∂G/∂p)*(∂p/∂x)+(∂G/∂q)*(∂q/∂x)=0という式になる。 ※ここで質問ですが、これらの式はどう解釈したらいいのでしょうか? 例えばF(x,y,u,p,q)=px-qy-u=0という式があった場合x,y,u,p,qを独立変数ととらえた場合(∂F/∂x)=pという式が出てくると思います。 しかし、(∂F/∂x)とは別に(∂F/∂p)*(∂p/∂x)+(∂F/∂q)*(∂q/∂x)という項があるのを見ると、一体この2つの項はどこから出てきたのかが疑問に思えます。xの関数であるpとqの合成関数の微分のようにも見えます。ただuもxとyの関数であるはずですので、なぜ(∂u/∂x)といった項が出てきていないのか分かりません。 手順3の続きです。 次にFとGをyで偏微分すると、Fは(∂F/∂y)+(∂F/∂p)*(∂p/∂y)+(∂F/∂q)*(∂q/∂y)=0,Gは(∂G/∂y)+(∂G/∂p)*(∂p/∂y)+(∂G/∂q)*(∂q/∂y)=0となる。 最後にFとGをuで偏微分すると(∂F/∂u)+(∂F/∂p)*(∂p/∂u)+(∂F/∂q)*(∂q/∂u)=0,Gは(∂G/∂u)+(∂G/∂p)*(∂p/∂u)+(∂G/∂q)*(∂q/∂u)=0 ※ここでも同じ質問ですが、これらの式はどのように考えたらでてくるのか疑問です。 さらにこの手順に従って進めると上に挙げたFとGをx,y,uで偏微分した6つの式から(∂q/∂u),(∂p/∂u),(∂q/∂x),(∂p/∂y)の値が出てきてこれらを(2)の式に代入することで、最終的に{dx/(∂F/∂p)}={dy/(∂F/∂q)}=[du/{p(∂F/∂p)+q(∂F/∂q)}]=-[dp/{(∂F/∂x)+p(∂F/∂u)]=-[du/{(∂F/∂y)+q(∂F/∂u)}]という特性方程式が出て、この中の2つを用いてもう1つのpとqの関係式Gを求めるようです。このFとGからpとqの値が求まるので、これを用いて解を求めるようになっています。 長くなりましたが、私が間違っている箇所も含めて解説していただければと思います。

  • 【高校数学】図形と方程式

    a,b,mを正の実数とする。 xy平面上の点A(a,0)から直線y=mxへ下ろした垂線の足をA'とし、x軸に関してA'と対称な点をPとする。 また、点B(0,b)から直線y=mxへ下ろした垂線の足をB'とし、y軸に関して対称な点をQとする。 線分PQを2:1に内分する点をRとする。 mの値が全ての正の実数を動くとき、Rの軌跡を図示せよ。 この問題で、私は P(p,-mp)Q(-q,mq) ※p=a/m^2+1,q=b/m^2+1 R(p-2q/3,-m(p-2q)/3)、 Rのx座標=X,y座標=Yとおき Y=-mXにX,p,qを代入してm>0の範囲に少なくとも1つ解を持つ範囲を求めようとしましたが、上手くいきませんでした。 よろしければどこが間違っているかの指摘もしくは解法をよろしくお願いします。

  • この問題の解法を教えてください!

    2つの曲線は、関数 y=f(x)=3x2(2乗)(x>0)  y=g(x)=19x2(2乗)(x>0) のグラフである。 点Pは、曲線y=f(x)上を、点Qはy軸上を動く。また、点Pを通り、y軸に平行な直線の、曲線y=g(x)との交点をRとする。点Pのx座標がaの時、線分PQ、PRが隣り合う2辺とする平行四辺形が正方形になる。このとき、aの値を求めよ。 問題の答えは、16分の1なのですが、どのように解法していけばよいか、教えてください。

  • 図形と方程式の問題です

    A(5,1)B(2,6)とする。x軸上に点P、y軸上に点Qをとるとき、AP+PQ+QBを最小にする点P、Qの座標を求めよ。また、そのときの最小値を求めよ。 僕は類似の問題で対称移動を使ってといたのですが、この問ではうまくいきませんでした。 どうかお願いします

  • 数学、図形と方程式

    問、平面内に2点P(2,0), Q(0,4)をとり2点P,Qを通る円を考える。この円の中心Cのx座標をmとする。 (1)このときCの座標は(m, 1/2m+3/2) (解)線分PQの方程式はy=-2x+4。線分PQの垂直二等分線の方程式はy=1/2x+3/2となり円Cの中心は y=1/2x+3/2上に存在するので。 次の問に疑問点があります。 (2)m=□のとき円はy軸に接し、その円の方程式は(x-□)^2+(y-□)^2=□□である。  という問題なのですが、 最初の m=□を求める際に解答は、下記のようなんですが、 (解)円Cがy軸に接するつまり、Q(0,4)を接する円となる。よって、(Cの中心のy座標)=4となる。 1/2m+3/2=4→m=5となる。 1/2m+3/2=4 ←これが理解できないです。

  • 偏微分方程式

    この偏微分方程式の解き方を教えて下さい Ux + Uy = 0, U(0,y) = y^2 但し, v(s,t)=u(s+t, s-t)と置くこと. v(s,t)と置く場合の解き方がよく分かりません.

  • 偏微分方程式の解き方

    以下の偏微分方程式の解き方(正規形に変換)を教えて下さい. (1)Uxx + 4Uxy + 4Uyy = 0 (2)Uxx - 4Uxy + 3Uyy = 0 (3)4Uxx - Uyy = 0 <解答> (1)U=x f(2x-y)+g(2x-y) (2)U=f(3x+y)+g(x+y) (3)U=f(x+2y)+g(x-2y) いずれの方程式もv=x+py, w=x+qyとおき U(x,y)=U((qv-pw)/(q-p), -(v-w)/(q-p))=U(v,w)とし, Ux, Uxy, Uyyw求めて元の方程式に代入して解こうとしましたが うまくいきません. よろしくお願いします。

  • 一次関数と図形の面積の問題です。

    関数の問題は、なるべくグラフ用紙を使用していますが、よく解法がわかりませんのでよろしくお願いします。(__) 問題文です。 『図において点PはY=-2X*1上を移動します。点Pは点Qを出発し矢印の方向(右下)に移動します。三角形OPQの面積が3になるときのPQの長さを求めなさい。(点QはY軸上にあります。)』 解答は『6√5』ですが、どうしても解法がわからないのでよろしくお願いします。<m(__)m>

  • 微積分で解く問題だと思いますが、次の問題の解法が分かりません。

    微積分で解く問題だと思いますが、次の問題の解法が分かりません。 曲線がある時、曲線上の点P(α,f(α))とし、 曲線に対する点Pのでの接線とX軸との交点Qとする時 |PQ|が一定であるような曲線の式を求めよ、という問題です。 曲線がy=f(x)のような素直な式なのかどうかすら定かではありません。 何かいい解法がございましたら、ご教授願います。