• 締切済み

ジョルダン図形の問題教えてください。

sabodesの回答

  • sabodes
  • ベストアンサー率34% (15/43)
回答No.3

 補足しておきます。全ての角が鋭角であることを想定して説明していました。  三角形は形が変わっても内角の和は等しいので、変形しても同じ事になります。  Zincerさんの証明も正しいです。ジョルダンn角形を三角形に分割するのにn角形の数を増やすことから導き出していますよね。おそらく問題の出題者も(n-2)と括弧でくくっていますから同じ意図なのかもわかりません。三角の積み木をくっつけていくとジョルダンn角形ができると言う意味かもしれません。  ただ、幼稚園児に理解と言うことだったので、ケーキを切るようにn角形は、nの数だけ辺を持っているのでその数の三角形に分けられるという方が解りやすいのではと思って前のような説明にしました。  稲妻形を想定すると私の説明では解りにくいかもしれませんが、分割することで同じように説明できます。  まあ、いずれにしても幼稚園児にも解るようにというのは問題の出題に無理があるような気がします。三角の説明の前に何度も度の説明が必要な気がします。「何で180度なの。100度じゃどうしていけないの。」と聞かれても私には答えられません。

kasumi-minori
質問者

お礼

変な問題で困るなかありがとうございます。

関連するQ&A

  • 多角形の内角の和の極限値について

    n角形の内角の和は 180(n-2) で与えられるのであれば、n→∞の極限…すなわち ∞角形の図形の内角の和は lim(n→∞)=180(n-2)=∞ で。∞角形とはつまり「円」の事なので円の内角の和は∞…ということになりませんか?

  • 多角形の内角の和の極限値について

    n角形の内角の和は 180(n-2) で与えられるのであれば、n→∞の極限…すなわち ∞角形の図形の内角の和は lim(n→∞)180(n-2)=∞ で。∞角形とはつまり「円」の事なので円の内角の和は∞…ということになりませんか?

  • 幾何問題

    問題 n角形の内角の和は180°×(n-2)であることを、次の手順で説明せよ。 (1)1つの頂点から出る対角線の数は何本か。 (2)その対角線により、いくつの三角形ができるか。 (3)内角の和を求めよ。 だれか、答えを教えてください。

  • 多角形の内角の和

     正n角形の内角の和が(n-2)180°となる証明はわかるのですが、どんなn角形でも成り立つことの証明を知っている方、教えてください。  任意のn角形(n≧4)が三角形と(n-1)角形に分割できることが示せれば、あとは帰納法で示せると思うのですが…

  • 凹多角形

    外角を2π-内角として考えるんでなく4π-内角としたら 次のことは凸n角形だけでなく凹n角形でも成立ちますか? 1. 内角の和=2π(n-2) 2. 外角の和=2π(n+2) また凹n等辺n角形の内角はどのようになっているでしょうか?

  • 図形の対角線について質問です。

    図形の対角線について質問です。 問題 1つの円周上に、等間隔に並んだ点が N個あります。 このN個の点を結ぶ線を書いたとき、その線の数は276本になりました。 点の数は いくらだったのでしょうか? この問題を解くときの途中式がよくわかりません。 n角形の対角線の本数は(n-3)n/2でもとめられるから、 (n-3)n/2=276となり、整理すると 2×{n(n-3)n/2+n}=2×276 となるらしいのですが、+nとはなんでしょうか? 私はこのように計算したのですが、違うようでした。 (n-3)n/2=276 両辺に2をかけて (n-3)n=552 n^2-3n-552=0 しかし、因数分解した値が自然数でないので答えになりません。 どうかご教示お願いします。

  • 【中学数学】多角形の内角の和、外角の和につきまして

    多角形の内角の和につき、対角線をひいて考えることで、 n角形の内角の和が、 180°×(n-2) となるところまでは理解できました ただ、このあと、どういう理屈で、 「よって、多角形の外角の和は360度」となるのか、 理解できません。恐縮ですが、教えていただけませんでしょうか。

  • 数Bの問題教えてください

    1*1+2*2+3*2^2+…+n*2^(nー1) の和の解き方を教えてください。 答え(nー1)*(2^n)+1 和をSnとして引いて求めると思うのですが、答えがあいません。 最後まで詳しく解説していただくとありがたいです。

  • 多角形の内角と外角

    問題 n角形の内角の和は180°×(n-2)であることを、次の手順で説明せよ。 (1)1つの頂点から出る対角線の数は何本か。 (2)その対角線により、いくつの三角形ができるか。 (3)内角の和を求めよ。 だれか、答えを教えてください。

  • ジョルダン開曲線の存在の証明はこれで正しい?

    確認させて戴きたいことが有ります。 n次元複素空間C^nに於いて, a∈C^nに対して,B[a,1/k):={z∈C^n;|z-a|<1/k} (k∈N)を中心をaとする半径1/kの開n次元球体, ,B[a,1/k]:={z∈C^n;|z-a|≦1/k} (k∈N)を中心をaとする半径1/kの閉n次元球体と呼ぶ事にする。 B[a,1)\B[a,1/2]≠φなのでb_1∈B[a,1)\B[a,1/2]という適当な一点が取れる。 続いてb_2∈B[a,1/2)\B[a,1/3]という適当な一点が取れる。 この時,B[a,1)\B[a,1/3]は開領域なのでb_1を始点としb_2を終点とする連続曲線γ(b_1,b_2)が採れますよね。 同様に,B[a,1/2)\B[a,1/4]\γ(b_1,b_2)も開領域なのでb_2を始点としb_3を終点とする連続曲線γ(b_2,b_3)が採れますよね。 同様に,B[a,1/3)\B[a,1/5]\γ(b_1,b_2)\γ(b_2,b_3)も開領域なのでb_2を始点としb_3を終点とする連続曲線γ(b_3,b_4)が採れますよね。 : これらの連続曲線を順に繋いでいって, ∪_{j=1..k}γ(b_j,b_{j+1})とするb_1を始点としb_{k+1}を終点とする連続曲線γ(b_1,b_{k+1})がえんえんと伸ばせますよね(∵選択公理)。 勿論,lim_{k→∞}b_k=aとなりますね。 そこで本題ですが, {a}∪(∪_{j=1..∞}γ(b_j,b_{j+1}))はb_1を始点としaを終点とする連続曲線γ(b_1,a)が採れると思います。 その際,Γ:[0,1]→γ(b_1,a)はという媒介変数t∈[0,1]を用いたb_1を始点としaを終点とする連続曲線ですよね? 各γ(b_j,b_{j+1})は有限の長さなので(∵γは連続写像なのでコンパクト集合[0,1]の像もコンパクトになる) Γ:[0,1]→{a}∪(∪_{j=1..∞}γ(b_j,b_{j+1})) を Γ:[0,1/2]→γ(b_1,b_2); Γ(0):=b_1, Γ(1/2):=b_2, Γ:[1/2,1/3]→γ(b_2,b_3); Γ(1/2):=b_2, Γ(1/3):=b_3, : Γ:[1/j,1/(j+1)]→γ(b_j,b_{j+1}); Γ(1/j):=b_j, Γ(1/(j+1)):=b_{j+1} : と定義すれば宜しいかと思います。 特にγ(b_j,b_{j+1})の長さをlとすると,Γ:[1/j,1/(j+1)]→γ(b_j,b_{j+1})を Γ(1/j)+(1/(j+1))/2):=lの中間点, Γ(1/j)+(1/(j+1))/3):=lを3等分した始点から1/3の地点, : という風に定義するとΓは全単射になると思います。如何でしょうか?