• 締切済み

ππ*遷移の化合物が極性溶媒中で短波長シフトする理由。

ππ*遷移をする化合物の吸収、蛍光スペクトルを測定すると、極性溶媒中で短波長シフトしています。短波長シフトすると言うことは、HOMO-LUMO間のエネルギー差が大、HOMOの電子状態が安定化するか、LUMOが不安定化するかによると思うのですが、なぜそうなるのか。わかりません。考えられる理由(現象)を教えてください

みんなの回答

noname#160321
noname#160321
回答No.2

自分でそのような状態を観測したことがないので、あくまで推定ですがlapis_lazuli様が仰ることはあり得ます。 小さな分子ではかなり困難ですが、もしそうなら系をお示し下さい。 一方分子内に極性基を持つ大型の分子(例えばポリペプチド、オリゴ糖など)内にあるクロモフォアを考えて下さい。無極性溶媒内と極性溶媒内ではクロモフォアを取り巻く環境が「裸の」クロモフォアとは逆になる可能性があります。つまり極性溶媒中で分子のねじれ方が変わり、極性基が分子の外側に向き、分子の内側には非極性基が並んでクロモフォアを取り囲むとすると、クロモフォアが感ずる環境は極性溶媒内で非極性となってしまいます。

全文を見る
すると、全ての回答が全文表示されます。
  • Kemi33
  • ベストアンサー率58% (243/417)
回答No.1

こちらの過去質問の回答が参考になるかと思います。  ・http://okweb.jp/kotaeru.php3?q=423826   QNo.423826 吸収極大波長のシフト  ・http://okweb.jp/kotaeru.php3?q=429216   QNo.429216 π-π*吸収極大波長の長波長シフト

参考URL:
http://okweb.jp/kotaeru.php3?q=423826, http://okweb.jp/kotaeru.php3?q=429216
lapis_lazuli
質問者

補足

過去の回答にあるように一般に極性溶媒中で、nπ*が短波長シフト、ππ*が長波長シフトすることは存じておりますし、理由もわかります。しかし、今回の場合は一般的な考え方では、説明がつかないため、質問させていただきました。ππ*でもHOMO-LUMO間のポテンシャルが異なれば、短波長シフトすることもありうるそうですが、なぜかわかりません。この理由を説明していただけないでしょうか?また、他に考えられる要因があれば教えてください。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 吸収スペクトルについて

    たとえば、ベンゾフェノンのようなものは nπ*遷移して励起状態で酸素原子がδ+、炭素原子がδ- になり、吸収スペクトルを測定する際、 溶媒の極性度によってシフトすると思うのですが、 無極性溶媒中より極性溶媒中のほうが、励起状態が安定になり吸収スペクトルが長波長側にシフトすると考えてよいのでしょうか?

  • 共役の長大=長波長シフト?

    芳香族多環化合物で、π電子共役系が伸びることによってなぜHOMO-LUMO差が縮まるのかがわかりません。 π電子共役系が伸びるとUV吸収スペクトルの吸収極大は長波長シフトすることは実験的にわかります。そして、長波長シフトはHOMO-LUMO差が縮まることによって引き起こされることも理解できますが、なぜHOMO-LUMO差が縮まるのかがわかりません。 なるべく量子化学に踏み込まずに、単純に説明できる方がいらっしゃいましたらお願いします。

  • SN1の極性溶媒による安定性について

    なぜ極性溶媒は遷移状態(脱離段階)を安定にするのですか? その後の中間体は非極性溶媒中のほうが反応しないように思うのですが・・・・・ むしろ極性溶媒中では陽イオン中間対と溶媒のマイナスが反応してしまい不安定ではないかと思うのですが。

  • π-π*吸収極大波長の長波長シフト

    π-π*遷移に基づく吸収極大波長は溶媒の極性が大きくなると、長波長側へシフトするのでしょうか?短波長側にシフトするという説もあるのですが、どちらが真実なのでしょうか?

  • 遷移金属化合物に不対電子を持つものが多いのはなぜ?

    こんにちは。 典型元素化合物では、不対電子を持つ安定な化合物となると、NOやO2、嵩高い置換基で不対電子を保護した化合物くらいしか存在しません。 しかし、遷移金属化合物ならばCu(H2O)6^2+やVCl3のように、不対電子を持っている安定な化合物がたくさんあります。 一般に不対電子を持っていれば不安定なはずなのですが、なぜ遷移金属化合物ならば安定なのでしょうか? 不対電子を収容する軌道のエネルギー順位などが関係してくるのかと思いましたが、資料が得られませんでした。 どうかよろしくお願いします。

  • 溶媒によって蛍光スペクトルの発光強度が異なる.

     今、大学3年生の学生です。吸収スペクトルと蛍光(発光?)スペクトルを測定する実験をしました。その実験で1つ疑問があります。 <実験内容>  未知試料溶液(A~Eから1つ選ぶ)と標準物質(9,10-ジフェニレンアントラセン溶液)をそれぞれ測定して、吸収と蛍光スペクトルからどういう物質か?推測して,その発光効率(発光収率?)はいくつか答えなさい。という実験です。  実験中、間違って、未知試料B(シクロヘキサン溶液)に対して溶液が違う標準物質(エタノール溶液)を持ってきてしまって、標準物質を正しく選んだ班と測定結果が違ってしまいました.(その時、立ち会っていた大学院生から、標準物質の溶液は全部、一緒じゃないからと言われました。) ちゃんと同じ溶媒を持ってきた班と自分達の班の標準物質の結果を比べたら、吸収スペクトルではスペクトル(波形?)が横にズレており、蛍光スペクトルではスペクトルの強度と形状が違ってしまいました。  吸収スペクトルでスペクトルがズレてしまったのは、溶媒の極性の違いで試料の基底状態の位置が異なるからスペクトルがズレた。と聞いて納得できたのですが、蛍光スペクトルで強度に違いが出るのは、わかりません。 <質問>   溶媒の違いで蛍光スペクトル強度と形状が異なるのはなぜでしょうか?これは、たまたまこの標準物質だからそうなったのでしょうか?このような質問が以前にもあったのですが、参考図書など私の大学にないので...参考URLとか教えていただければ、すごく嬉しいです。 <補足>  溶液の濃度は、すべて同じ濃度(2μM)にしてあるそうです。測定の条件は正しく選んだ班と同じ条件で測定しました。  回答よろしくお願いします。

  • 吸収極大波長のシフト

    一般にn-π*遷移の吸収極大波長は溶媒の極性を高めると短波長にシフトするらしいのですが、その理由を教えてください。

  • エチレンの光吸収による構造の変化について

    エチレンが光吸収によるHOMO-LUMO遷移により構造が変化するのはなぜですか?

  • 蛍光スペクトルが長波長側にも出るのはなぜ

     よく吸収スペクトルと蛍光スペクトルは鏡像になっているといわれますが、なぜ長波長側にも蛍光スペクトルが観測されるのでしょうか。  蛍光スペクトルを観測するとき、吸収スペクトルで一番長波長のものを一番目の励起状態S1とするとそれ以降の励起状態は振動緩和や内部変換などでS1の最安定配置になってから蛍光を出すと思うので蛍光スペクトルは一つのピークのみになってしまうのではないでしょうか。  また、例えばS1と二番目の励起状態S2のエネルギー差が大きくS2から蛍光を出すとしてもエネルギーが大きくなりS1の最安定配置からの蛍光よりも短波長になってしまうと思います。よって、蛍光スペクトルで一番長波長なのはS1からの蛍光となり鏡像とはならずに吸収スペクトルと交差する部分が生じると思います。 なぜきれいな鏡像になるのかわかりません。ご指導の方よろしくお願いします。

  • 吸収極大についておしえてほしいんですけど・・・

    吸収極大は溶媒の極性を高めると短波長側に移動する理由がわからないんです。。 よかったらおしえてください(;´-`)

ポケトークSの翻訳できない
このQ&Aのポイント
  • ポケトークSでの翻訳に問題が発生しています。
  • ボタンを押しても翻訳ができず、エラーメッセージが表示されます。
  • グローバル通信付SIMカードやWi-Fi接続が正常に設定されているにもかかわらず、翻訳ができない可能性があります。
回答を見る