• ベストアンサー
  • すぐに回答を!

数列  漸化式

教科書を参考にしても、以下の四問が分からなくってかなりあせってます。答えまで導いていただいたら幸いです。よろしくお願いします!!  次の漸化式で表された数列の一般項a(n)を求めよ (1) a(1)=1、a(n+1)=a(n) / a(n)+1 (2) a(1)=1、a(n+1) / n+1=a(n) / n +2 (3) a(1)=1、n・a(n+1) =(n+1)・a(n) + n(n+1) (4) a(1)=3、a(n+1) = 3a(n) + 3のn+1乗

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数158
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

(1)では両辺の逆数をとりましょう。すると 1/ a(n+1)=a(n)+1/ a(n)=1+1/a(n)となります 1/a(n)という数列はこの式から公差1、初項1の等差数列と分かるので 1/a(n)=n つまり  a(n)=1/n です (2)ではa(n) / nという数列は公差2、初項1の等差数列です。(分かりにくければa(n) / n=b(n)とおくと分かりやすいと思います。b(n+1)=b(n)+2になります) a(n) / n=2n-1 よって a(n)=n(2n-1) (3)では両辺n(n+1)で割りましょうすると a(n+1) / n+1=a(n) / n +1になります あとは(2)と同じように解いてください。 おそらくa(n)=n^2(nの2乗)だと思います (4)では両辺3のn+1乗で割りましょうすると a(n) / 3^nは初項1 公差1の等差数列となるので 後は計算してください  a(n) =n・3^nです

共感・感謝の気持ちを伝えよう!

質問者からのお礼

分かりやすい解き方ありがとうございました。これで解決してすごく感謝してます!

関連するQ&A

  • 数列 漸化式

    A(n+1)=2A(n)+n (初項A(1)=1) という数列があるとします。 この一般項の形を求めるのに、この漸化式を満たす数列{B(n)}=αn+βを設定して、 この漸化式に代入、恒等式から{B(n)=-n-1}がわかります。 この{B(n)}の式が最初の漸化式を満たすわけですから、 A(n+1)=2A(n)+n B(n+1)=2B(n)+nの両辺を引いて A(n+1)-B(n+1)=2(A(n)-B(n))という等比数列が成り立つので、 A(n)=3*(2のn-1乗)-n-1   となると思うのですが、 ここから質問です。 なぜ最初の漸化式を満たした、B(n)=-n-1 と これまた漸化式を満たしている、A(n)=3*(2のn-1乗)-n-1 が異なっているのでしょうか? 回答お願いいたします。

  • の漸化式で定義される数列{an}の・・・

    次の漸化式で定義される数列{an}の一般項を求めよ。 (1)a[1]=2, a[n+1]=a[n]-3 (n=1,2,3,・・・) (2)a[1]=1, a[n+1]=5a[n] (n=1,2,3,...) よろしくお願いします!

  • 数列の漸化式質問

    教科書で漸化式の記述です。 an+1=pan+qで与えられている数列の求め方 例 a1=3 an+1=3an-4 で定義されている数列を{an}とする 数列{an}は 3 , 5 , 11 , 29 , 83 ,・・・となりますよね。 この数列{an}の各項から2を引くとできる 数列を{an -2}は 1 , 3 , 9 , 27 , 81 , ・・・ となる。数列{an -2}は、初項1 公比3 の等差数列になっている。 数列{an}に対して、数列{an -2}の一般項は an -2=1×3^n-1となっています。 ここが何でn-1なのですか? {an}はn項あると思うのですが・・・ できるだけ詳しい解答お願いします。

  • 数IIBの数列の漸化式の問題です。

    数IIBの数列の漸化式の問題です。 本当に分からないので、基礎の知識から詳しく教えてもらえるとありがたいです・・・ 1. 数列1,1,4,1,4,9,1,4,9,16,1,4,9,16,25,・・・・・・がある。 この数列の第100項および初項から第100項までの和を求めよ。 2 数列1,2,3,・・・・・,nにおいて次の積の和を求めよ。 (1)異なる2つの項の積の和(n≧2) (2)互いに隣り合わない異なる2つの項の積の和(n≧3) 3 次の条件によって定められる数列{An}の一般項を求めよ。 (1)A1=1 An+1=9-2An (2)A1=1 An+1=4An+3 4 数列{An}の初項から第n項までの和SnがSn=n-Anであるとき、a1,a2,a3および{An}の一般項を求めよ。

  • 漸化式の問題

     漸化式の単元の問題でわからないものがあるので教えてください。問題は「数列{a_n}が次の漸化式を満たすとき、{a_n}の一般項を求めよ。 a_1=2 , a_n+1=2a_n+2n+1(n=1,2,3...)」というものです。  どなたか解法を教えて下さいませんか?よろしくお願い致します。

  • 漸化式がa_n+1 = √(pa_n + q )となる数列の一般項

    a_n+1 = √(pa_n + q ) (但しp,qは実数でp≠0、q≠0) このような漸化式の数列a_nの一般項を求めてみたいのですが、 (p,q) = (1,2)の場合については一般項が求まりましたが、 それ以外の場合の一般項が求められません。 このような形の漸化式からa_nの一般項を求める方法はあるのでしょうか?

  • 漸化式と数列の問題です。お願いします。

    漸化式で定義される数列{an}の一般項anを求めよ。 a1=2, an+1=3an+2 (n=1,2,3,・・・・)

  • 漸化式の答え合わせをお願いします。

    東京書籍の数学Bの教科書を用いて、3期の予習をしているのですが、 練習問題には答案が一切ついていません。 問題と自分で解いた答えを書くので、答え合わせをお願いします。 1章2節漸化式と数学的帰納法、1漸化式からです。 P39,問3、次のように定められた数列の一般項を求めよ。 (1)初項A1=3, 第n+1項A(n+1)=An+n^2-n (nは自然数) 私の答え...(n^3-3n^2+2n+9)/3 (2)A1=2,A(n+1)=An+3^n (nは自然数) 私の答え...(3^k+3)/2 間違っていた場合は、補足欄に解きなおした答えを書くので、 再び採点していただけると嬉しいです。 お願いします。

  • 漸化式

    よろしくお願いします。 [問題] 次の条件で定められる数列{An}の一般項を求めよ。  A1=2、An+1=An/(1+An) (n=1、2、3、……) [解] 条件により A1=2/1、A2=2/3、A3=2/5、A4=2/7  よって、一般に         An=2/(2n-1) ・・・・・・(1)  となることが推測される。   一般項が(1)である数列{An}が、条件を満たすことを示す。  [1] (1)でn=1とおくと  A1=2  [2] (1)をAn/(1+An)に代入すると       An/(1+An)=2/(2n-1)÷{1+2/(2n-1)}              =2/(2n-1)÷(2n+1)/(2n-1)              =2/(2n+1)              =2/{2(n+1)-1}    よって、An+1=An/(1+An) が成り立つ。  [1]、[2]から、求める一般項は  An=2/(2n-1)。 ※このサイトだと項の番号をうまく表記できないので、A1は初項、Anは第n項、An+1は第n+1項などと表しています。 この問題は数列の一般項を推測し、推測した一般項が条件を満たすことを示して、一般項を求めてるみたいなのですが。 [2]の証明で、どうして(1)が漸化式を満たしてるのか、よく分かりません。どうしてですか?。 また、(1)は推測したものだから、全ての自然数nについて(1)が必ず成り立つとは言えないですよね?。なら、(1)を漸化式に代入できないと思うのですが、どうして代入できるのですか?。 以上ですが。分かるかた、教えてくださいm(__)m。

  • 漸化式から数列の一般項を求める問題で・・

    連続した質問で申し訳ありません。 a(1)=1,2a(n+1)=a(n)+2の漸化式によって帰納的に定められた数列の一般項を求めよという問題なのですが・・ n=1 2a(2)=a(1)+2 n=2 2a(3)=a(2)+2 n=3 2a(4)=a(3)+2 ・・・・・・・・ n-2 2a(n-1)=a(n-2)+2 n-1 2a(n)=a(n-1)+2 よって (a(2)+a(3)+a(4)+…a(n-1))+2a(n)=a(1)+2(n-1) 2a(n)=1+2(n-1)-(a(2)+a(3)+a(4)+…a(n-1)) a(n)=(1+2(n-1)-(a(2)+a(3)+a(4)+…a(n-1)))/2 となると思うのですが、 この先、どのようにしたら回答の「2-(1/2)^(n-1)」に行き着くのかが分かりません。 どなたかどうか解説お願いします。