• ベストアンサー
  • 困ってます

ばねの仕事と弾性エネルギーの関係について

・ばねを伸ばす(縮める)のにした仕事=ばねの弾性エネルギーの増加分 ・ばねが外にした仕事=弾性エネルギーの減少分 というのを習ったのですが、これでつまづいてしまいました。 問 ばねの先端に質量mのおもりPを取り付け、他端を天井に取り付け、全体を吊り下げて静止させた。重力加速度の大きさをg、ばね定数をkとする。 この状態からPに下向きの力を加え、ゆっくり距離aだけ引き下げ、ここで手でおさえておく。この間のばねの弾性エネルギーの増加量をUとする。 このときPに下向きに加えた力が物体Pの下方の変位の間にした仕事をWとすると、Wはいくらか? 正解 W=-mga+U とあったんですが、なぜ上で書いたようにいかないのでしょうか?実際に力学的エネルギー保存でやるとこうなるのはわかったのですが、「仕事=弾性エネの増加」という関係にたどりつかないのがわかりません。結果から見て位置エネルギー(-mgaという)が入ってるわけですから、上で書いたことは必ずしも成り立たないということでしょうか?アドバイスよろしくおねがいします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数1769
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

・ばねを伸ばす(縮める)のにした仕事=ばねの弾性エネルギーの増加分 「ばねを伸ばす(縮める)のにした仕事」ですよね? この場合地面垂直方向にPを動かしてやったのだから Wは「ばね」だけにした仕事ではないです。 ばねに仕事をしないと、ばねはエネルギーを吸収も放出もしないです。 たとえば1つのばねがあり、それとは別の位置にコップ一杯の水が有ったとします。 今水にW=100ジュールの熱を加えたとき、ぜんぜん関係の無いばねがその100ジュールを吸収するでしょうか? -mgaはPの位置を変えるのに使われたエネルギーであってばねはまったく関係ありません。 ばねを水平に置いて同様のことををすると位置エネルギーが変わらないので、「仕事=弾性エネの増加」となりますが(空気抵抗その他無視でですけど)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

まったくその通りですね...何を考えていたのか自分でも馬鹿みたいです。一度はまると抜け出せないみたいで。ありがとうございます!!

その他の回答 (1)

  • 回答No.2

運動方程式くらい書いてから考えよ 感覚で物理は解けない

共感・感謝の気持ちを伝えよう!

質問者からのお礼

書いた上で質問させていただきました。ただ一度思いこんだせいで抜け出せなかったみたいです。僕は自分で何も考えもしないでここに書き込むことはないのでそれは理解していただきたいです。

関連するQ&A

  • 弾性エネルギー

    物理Iについて質問です。 ばねの一端を固定して他端に物体をつり下げるとして、 ばねを縮めた(または伸ばした)とき、弾性エネルギーを持つのはばねですよね。 それともばねに吊り下げた物体でしょうか。 弾性エネルギーの定義にようると、これをもっているのは力を加えられて変形している物体(上のような場合はばね)ということですが、 他の参考書には、変形したばねに固定された物体は弾性エネルギーを持つ、というような記述もありました。 初歩的なことだと思いますが、結局よくわからないのでどなたか教えていただけたら嬉しいです。

  • ばねの問題

    軽いつる巻きバネの一端を天井に固定し、他端に質量m[kg]の小球をつるしたところ、ばねがx0[m]伸びた位置で釣り合った。この位置から小球を下方へA [m]ひいてはなしたら、小球は釣り合いの位置を中心として振動した。重力加速度の大きさをg[m/s^2]とし、釣り合いの位置を重力による位置エネルギーの基準にとって次の問いに答えよ。 (1)このばねのばね定数は何N/mか。 (2)最下点における重力における位置エネルギーと弾性力エネルギーによる位置エネルギーの和は何Jか。 (3)小球の力学的エネルギー保存より、ばねがつりあいの位置を通過する瞬間の小球の速さを求めよ。 この問題は先生が考えた問題だそうです。 (1)は解けたのですが(2)、(3)を解くことができません。 (3)は何回やっても答えがv=√(g/x0A)になってしまい、解答に行き着くことができません。 お手数かけますがこの問題を解いてくれませんか。よろしくお願いします。

  • 力学的エネルギー保存則

     私は高2のzerosikiです。  早速ですみませんが、教科書でこんな問題が出ました。    ばね定数kのばねの上端を固定し、下端に質量mのおもりを取り付けると、ばねは自然の長さからaだけ伸びてつりあった。この状態から、速さvでおもりを下向きにはじいたところ、ばねは更にxだけ伸びた。このときのaおよびxを、k、m、v、および重力加速度の大きさgのいずれかを用いて求めよ。  この問題を解くにあたって、運動エネルギー、重力による位置エネルギー、弾性力による位置エネルギー、この三つのエネルギーの力学的エネルギー保存則での関係をうまく式にできません。  急いでいます。だれか、できるだけわかりやすく教えてもらえないでしょうか?

  • 弾性エネルギーと変位・外力の関係

    材料力学、構造力学という学問分野で力のつり合いだけでなく、外力による弾性変形まで考慮する場合、最小仕事とかカスティリアーノの定理などを使います。 弾性エネルギーを変位で微分すると力、力で微分すると変位となるようです。 簡単に言うと、ばねであり、F=E×L, U=E×L^2/2 → U = F×L/2 となります。U:弾性エネルギー、F:力、L:変位、E:バネ定数です。 そこで、UをFで微分すると、L/2, UをLで微分するとF/2 となり、2の割り算が残ります。これと冒頭の最小仕事等の原理とちょっと違うことになります。 これはどのように説明されるのでしょうか。あるいは私の思い違いとか。例えば、ばねには両端の2点があるからとかですが。 よろしくお願いします。

  • ばね振り子の力学的エネルギーの証明

    ばね振り子の振動中の任意の一点と自然長でのばね振り子の力学的エネルギーが等しいことを証明しようと思うのですが、うまくいきません。 外力が働かないため、力学的エネルギー保存則が成り立っているといえばそれまでなのですが、そうではなく、実際に計算によって確かめたいのです。 ばね定数kのばねに重さmの重りをぶら下げた時の釣り合いの位置をd(つまり、mg=kd)とする。 自然長(×つり合いの位置)Oでの速さをv0、任意の点Yでの速さをv、長さをyとすると、力学的エネルギー=運動エネルギー+重力の位置エネルギー+弾性エネルギーより、 E(Y)=mv^2/2+mg(y-d)+k(y-d)^2/2 E(O)=mv0^2/2+0+0 よって、 E(O)-E(Y)=m(v0^2-v^2)-(mg(y-d)+k(y-d)^2/2) =…… などと計算を続けたのですが、自分ではうまく0にできません。 どなたか模範回答をご教示ください。どうかよろしくお願いします。

  • ばねの変位量について(ばね組み合わせ時)

    下記の2つの問題について解き方、考え方等教えてください。お願いします。 ばねの状態は添付画像の右側の図になります。 左側の直列の図は無視してください。 1.点A,Bの中間点での変位量を求めよ。 (F9とF10が引き合っている点) 答えは、2/3x となっていますが、解き方がわかりません。 私なりに解いてみたのですが、 並列部の変位量は 1/2x  並列部を一つのばねと考えて、 上のばねと並列部のばねは直列なので変位量は x よって 1/2x+x=3/2x となってしまいます。 ちなみにですが、 点A,Bの中間点ではなく、おもりとばねが接続されている位置だと 変位量って変化するのでしょうか。 2.固有振動数を求めよ。 ・1本のばねのばね定数k:400N/m ・質量M:12kg ・ひずみエネルギーの和:1/3kx2 答えは、24Hz です。 答えの24Hzとは関係なくなりますが、解法の中で、 等価なばね定数kfは下記で求まる。 1/2kfx2=1/3kx2 よってkf=2/3k となっていますが、まず「等価」という意味がよく理解出来ませんでした。 弾性エネルギーの公式とそれぞれのばねの弾性エネルギーの和を イコールにしていますが、なぜそうするのかいまいちわかりませんでした。 お手数おかけしますが、どなたか教えていただけないでしょうか。 よろしくお願いします。

  • 高校物理のばねの問題です。

    あるばね定数 k のばねの一端が天井に固定されていて、他端に質量mのおもりが付けられている。ばねが自然長になるようにおもりを手で支え、(1)急に手を離すと、おもりは振動を始めた、(2)手でおもりを支えながらゆっくり手を下ろしていくと、ばねは伸びて、ある高さでおもりは静止した。 (1)(1)と(2)でなぜこのような違いが生じるのか、仕事とエネルギーの考え方から説明してください。 (2)(1)の振動の最下点でのばねの伸びは、(2)でのばねの伸びの何倍でしょう。 できるだけ早く回答をお願いします。

  • 物理 弾性エネルギー

    弾性エネルギーの問題です。 全く分からなくて困ってます。 (1)~(7)に当てはまるように書く問題です。 図(a)のように,自然長 l ,ばね定数 k のばねをつけた質量 m の物体を,地上より高さ h から自由落下させた。地面に落下したとき,この物体がばねを通して地面から受ける最大衝撃力の大きさ F を求めたい。ただし,重力加速度の大きさを g とする。物体の大きさとばねの質量は無視するものとする。  ばねの先端が着地した瞬間での運動エネルギーは,エネルギーの保存則から位置エネルギーの差 (1) に等しい。  ばねが,その自然長 l から x だけ押し縮められたとき,物体は一瞬静止した。この瞬間,物体はばねから最も強い力 F= (2) を受ける。この F を決めるには,ばねの縮み x を求めなければならない。  ばねが x だけ押し縮められたとき,物体は,重力による位置エネルギー (3) の他に,ばねの弾性力による位置エネルギー (4) をもっている。このときの物体の全エネルギーは,エネルギーの保存則から,ばねの先端が接地した瞬間に物体がもつ全エネルギー (5) に等しい。  以上の考察と簡単な計算により,最大衝撃力 F は次の形に書くことができる。       F=mg(1+ (6) ) h=l のとき,すなわち図(b)のようにばねを接地して静かに物体をはなしたとき,物体がばねから受ける最大の力 F は, mg の (7) 倍である。 (1)はmg(H-h)でいいとおもいますが それ以降がわかりません。 お願いします。

  • 同じばね定数のばね2つと違うばね定数1つの状態

    図のように同じ質量mの物体を両端に同じばね定数真ん中に違うばね定数のもので固定した場合の問題を解いています。 ※変位x_1とx_2では 0<x_1<x_2です そして初めの状態が自然長としています (1)時刻tにおけるおもり1,2についてそれぞれの運動方程式を求めよ (2)ばねの位置エネルギーUをk_1,k_2,x_1,x_2を用いて表せ (3)(2)で導いたUを用いて運動方程式を導け (4)この系の全力学的エネルギーEをm,k_1,k_2,x_1,x_1・,x_2,x_2・を用いて表せ (5)k_1=k k_2=2kとして x_1= A_1coswt x_2= A_2coswtとおき、おもりの基準振動の角振動数を求めよA_1,A_2は振幅である。 (6)(5)の場合の角振動数の場合に成り立つA_1、A_2の関係式を求めそれぞれの基準振動の様子を説明せよ とありました。 両端が固定されている場合でもやはり普通に変位が大きい方をとってk_1は考えないでいいのでしょうか。 (1)は mx_1・・= k_2(x_2-x_1) mx_2・・= -k_2(x_2-x_1) (2)ばねの位置エネルギーUは(1)のようにそれぞれあらわせとは書いていなかったのですが位置エネルギーというのはそもそも同じものとして表すことができるのでしょうかまた別々に表すならば U_1 = -(1/2)k(x_2-x_1)^2 U_2 = (1/2)k(x_2-x_1)^2 でいいのでしょうか。 (3) 位置エネルギーから運動方程式を求めるということから -dU_1/dx = k(x_2-x_1) -dU_2/dx = -k(x_2-x_1) (4) E = K+U より   (1/2)mx_1^2+(1/2)mx_2^2 = k(x_2-x_1) -k(x_2-x_1) (5)(6)もお手上げです。 というかk_1が指定されていることが問題に何度もだされていることから間違いであるのは気づいているのですがではどうしたらいいかがわかりません。 急いでいませんのでご都合のよろしいときに丁寧に教えていただけませんか。 お願いします。

  • 2つのばねの弾性エネルギー

    物理のばねの問題で分からないところがあったので質問させてください。 僕は2ヶ月前まで物理はほとんど無勉状態だったんですが、微積を使って物理を教えることで有名な苑田さんという方の、ハイレベル物理という講座を東進で取ることにより、少しずつ物理が得意になっていきました。 初学だったのでついていくのが大変でしたが、何度も復習を繰り返すことにより、 なかなか難度の高い問題も解けるようになりました。 しかし、先ほどばねの弾性エネルギーに関する初歩的な問題でつまづいてしまいました。 問題は、 「自然長が同じで、ともにばね定数kの軽いばねSを2つ用意する。このばねを水平でなめらかな床の上に置かれた質量mの物体Pにつなぐ場合の物体Pの運動について考える。なお、以下では、ばねの伸び縮みの方向、および物体Pの運動方向は水平であるとする。 まず、図1のように、2つのSを直列につなぎ、床の左端の鉛直な壁に左側のSの左端を、右側のSの右端にPをつなぎ、2つのSの自然長からの縮みがいずれもx(>0)の状態にして静止させる。この状態からPを静かに放す。 (1) Pを放す直前に、Pに加えている水平方向の外力の大きさを求めよ。 (2) Pを放した後、2つのSがともに自然長になる瞬間のPの速さを求めよ。 」 という問題です。 図1を模式的に表すと、|~~□ といった感じです。 (1)では、Pの水平方向のつりあいの式が、外力をFとすると0=F-kxとなり、F=kxと答えることができたのですが、 (2)では、Pの速度をv,加速度をaとすると、運動方程式はma=-kxとなるので、 これの両辺にvをかけて、積分したmv^2/2+1/2kx^2が一定のエネルギー保存則を使うと、自然長での速さをVとしたとき、 mV^2/2+0=0+kx^2/2 よって、V=x√(k/m) これで合っていると思ったのですが、解答を見たところ間違っていました。 解答では、「2つのSの縮みがいずれもxのとき、2つのSにはいずれも、kx^2/2で表される弾性エネルギーが蓄えられている。よって、2つのSがともに自然長になる瞬間のPの速さをVとすると、力学的エネルギー保存則より、 mV^2/2=m/2・0+kx^2/2+kx^2/2 ∴V=x√(2k/m)」 となっていました。 エネルギー保存は運動方程式から導けると習ったのですが、先ほどの僕の考え方はなぜ間違っていたのでしょうか? 運動方程式の立て方を間違えたのでしょうか? それとも、2つのばねの場合は事情が異なるのでしょうか? どなたかよろしければ教えてください。