• ベストアンサー
  • 暇なときにでも

中学生 線分比のこと

いま線分比の問題を解いています。 参考書に書いてある表現です。 「三角形ABCの2辺AB、AC上に、それぞれ点P、Qがあるとき、PQ平行BCならば AP/AB=AQ/AC=PQ/BC」 と書いてありますが、読み方がわかりません。 線分比が分数で書かれていると思うのですが。 「AB分のAP イコール AQ分のAC イコール PQ分のBC」と読むのか 「APたいAB イコール AQたいAC イコール PQたいBC」と読むのか、どちらですか?

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • kbannai
  • ベストアンサー率32% (88/268)

高校教員です。 どちらでも良いです。 ただし、前者の表現は AB分のAP イコール AC分のAQ イコール BC分のPQ ではないですか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

どちらでもいいんですね。 >AB分のAP イコール AC分のAQ イコール BC分のPQ あっ、そうでした。 比がなぜ分数であらわされるのか、新たな疑問が出来ました。 ちょっと考えてみます。 ありがとうございました。

その他の回答 (3)

  • 回答No.4

補足しときましょう。 地域にによってはa/bをa:bと書くところもあります。 おおもとは前者がエジプト式、後者がギリシア式ですが。 たしかフランスの教科書みてたら後者だったような。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

地域によって、ですか。 知りませんでした。 参考書にはなぜ分数で書いてあるのか、書いてないんです。 ありがとうございました。

  • 回答No.3
  • kbannai
  • ベストアンサー率32% (88/268)

#2です。勉強がんばっていますね。 分数(という表記の仕方)は偉大な発明ですよ。 疑問に思うことはとても大切なことです。 ぜひ、学校の先生を困らせるくらいに勉強しましょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

こんばんは。 しばらく考えてみたのですが、わかりそうでわからないような・・・ どうしてもわからなかったら、新たに質問してみたいと思います。 ありがとうございました。

  • 回答No.1
noname#138858
noname#138858

「AB分のAP イコール AC分のAQ イコール BC分のPQ」と読みます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。

関連するQ&A

  • 面積の比=辺の比が使えない

    問題 BCPQに囲まれた部分を30.00m^2となるようにPQの直線(BCに平行とする)で分割したい。 APおよびAQの辺長を求めよ。 ヘロンの公式を用いて、⊿ABC=90.62769113 ⊿ABC=90.62769113-30.00=60.62769113 ここで面積比=辺の比の法則を用いてAPとAQを求めようとしましたが、 うまくいきませんでした。 これは高さ(h)が異なるからでしょうか? どのように考えればいいのかわかりません。 よろしくお願いします。

  • 数学II 辺の比について

    △ABCにおいて、辺BCを1:2に内分する点をP、線分APを2:1に内分する点をQとし、線分CQの延長が辺ABと交わる点をRとする。 このような問題において△ARQ:△ABCを求めるとき、条件の比をそのまま用いて良いのでしょうか。 条件よりAQ:QP=2:1、BP:PC=1:2ということが分かると思いますが、この二つの比はそれぞれ違うものですよね? 中学時代にこういうものの比を統一させる方法を習った気がしたのですが…… 誤解していたら申し訳ないですが、言いたいことが伝われば是非教えてほしいです。よろしくお願いしますm(__)m

  • ベクトルの問題

    AD//BC、BC=2ADである四角形ABCDがある。点P,Qが ↑PA+2↑PB+3↑PC=↑QA+↑QC+↑QD=↑0 を満たすとき、 (1)ABとPQが平行であることを示せ。 (2)3点P,Q,Dが一直線上にあることを示せ。 (1) AD//BC,BC=2ADから ↑BC=2↑AD=2↑AD ↑AC-↑AB=2↑AD ↑AC=↑AB+2↑AD・・・(1) さらに↑PA+2↑PB+3↑PC=↑0から、 (↑AA-↑AP)+2(↑AB-↑AP)+3(↑AC-↑AP)=↑0 6↑AP=2↑AB+3↑AC (1)を代入すると 6↑AP=2↑AB+3(↑AB+2↑AD) =5↑AB+6↑AD ↑AP=(5/6)↑AB+↑AD・・・(2) また、↑QA+↑QC+↑QD=↑0から (↑AA-↑AQ)+(↑AC-↑AQ)+(↑AD-↑AQ)=↑0 3↑AQ=↑AC+↑AD (1)を代入すると、 3↑AQ=(↑AB+2↑AD)+↑AD    =↑AB+3↑AD ↑AQ=(1/3)↑AB+↑AD・・・(3) ここで、↑PQ=↑AQ-↑AP を 計算すると(2)、(3)より、 ↑PQ={(1/3)↑AB+↑AD}-{(5/6)↑AB+↑AD} =(-1/2)↑AB・・・(4) ∴ ↑PQ=(-1/2)↑AB よって、ABとPQが平行である。 (2)3点P,Q,Dが一直線上にあることを示せ。 ↑PD=↑AD-↑AP (2)を代入して、 ↑PD=↑AD-{(5/6)↑AB+↑AD}   =(-5/6) ↑AB   =(5/3)↑PQ よって、3点P,Q,Dは一直線上にある こうやると教えてもらったんですけど、合っていますか? こういうタイプの問題はとりあえず基準点を定めて位置ベクトルに直せばいいんですか? それとも他にいいやり方があるんですかね?(x_x;)

  • AB=3,BC=4,CA=2の△ABCがあり、この△ABCの内心をIとおく、 辺BCと平行な直線が辺AB,ACと交わる点をそれぞれP,Qとおいて△APQと△ABCの面積の比を求めたいのですが 聴覚の二等分線の定理より BD:DC=AB:AC=3:2は理解できたのですが AE:EB=1:2とCA:CB=2:4になるのがわかりません。

  • 線分比の問題

    三角形ABCのおいて、頂点Aと辺BC上の点Dを結び、 点Dを通り辺ACの平行な直線と辺ABとの交点をE、点Eを通り線分ADに 平行な直線と辺BCとの交点をFとする。 1、BF=9cm FD=6cmのとき    DCの長さ 2、EF:AD=2:3、BC=27cmのときのFDの長さ 1の答え 10cm 2    6cm   この問題がよくわかりません・・・・。 教えてください!!

  • 【中学数学】図形

      ★2枚の三角形の紙ABCとDEFがあり、△ABC≡△DEF、AB=12、BC=18、AC=15である。この2枚を図(添付)のように頂点Aと頂点Dを重ねると、辺BCと辺DE、辺ACと辺EFがそれぞれ交わった。 また、辺BCと辺DEの交点をH、辺BCと辺EFの交点をIとする。 ☆B子さんは、BCとDFが平行のとき、線分BHと線分EHの長さの比が求められることに気付いた。線分BHと線分EHの長さの比を、もっとも簡単な整数の比で表しなさい。(△ABH∽△IEHは証明済) A) 4 : 1 わかりやすい解説をお願いしますvv

  • 数学 平面ベクトル 解き方を教えてください

    (1)△ABCにおいて辺BCを2:1に外分する点をP、辺ABを1:3に内分する点をQ 辺CAを3:2に内分する点をRとする。 AB=b AC=cとおいて次のベクトルをb、cを用いて表せ。 (1)AQ、AR、AP、PQ、PR (2)3点P,Q,Rは一直線上にあることを示せ。 (3)QR:RPを求めよ (2)△ABCにおいて、AB=b AC=cとおく。辺ABを1:2に内分する点をD、辺ACを2:3に内分する点をEとする。また2つの線分CDとBEの交点をPとし、直線APと辺BCの交点をQとする。 (1)BP:PE=s:(1-s)とするときAPをs、b、cを用いて表せ。またCP:PD=t:(1-t)とするとき、APをt、b、cを用いて表せ。 (2)APをb、cを用いて表せ (3)AQをb、cを用いて表せ 類似したような問題を参考にして解いてみたのですができませんでした。 解法の手順も教えてもらえるとありがたいです。

  • ベクトル問題!!

    平行四辺形ABCDがある。辺BCを1:2に内分する点をP、辺CDを(1-t):tに内分する点をQとし、線分PQと対角線ACとの交点をRとする。「AB」(ABベクトル)=「a」 「AD」=「b」とおくとき、  「a」、「b]およびtを用いて「PQ」を表すと 「PQ」=(t-□)「a」+□/□「b」である。  という問題なんですが、「PQ」=「AQ」-「AP」となるのは分かるのですが、その計算が答えとどうしても合いません。 ちなみに答えは(t-1)「a」+2/3「b」です。

  • 2次関数の文章題教えて下さい。

    AB=AC=5cm、BC=6cmの二等辺三角形ABCがある。この二等辺三角形ABCの辺AB,AC上のそれぞれに点P、QをBC//PQとなるようにとり、PおよびQのそれぞれからBCに垂線PD、QEをひいて二等辺三角形ABCに内接する長方形PDEQを作るとき次の各質問に答えなさい。 (1)長方形PDEQが正方形であるとき線分PQの長さはPQ=□である。 (2)長方形PDEQの面積が最大となるような線分PQの長さはPQ= cmである。 とき方を教えて下さい。

  • 内分点

    △ABCの内部の点をPとしAPベクトル+2BPベクトル+3CPベクトル=ゼロベクトルが成り立つとする また、2点A、Pを通る直線と辺BCとの交点をQとする AP:PQ、BQ:QCを求めよ APベクトル=1/3ABベクトル+1/2ACベクトルだから AQベクトル=t(1/3ABベクトル+1/2ACベクトル)までは分かったのですが、ここからどうやればよいでしょうか?答えは AP:PQ=5:1 BQ:QC=3:2です