• ベストアンサー
  • 暇なときにでも

円の面積なんですが

仕事で面積を求めないといけないんですが すっかり忘れてしまって…(^^; 微分積分を使ってたような気がするんですが。。 例えば まずX軸Y軸があります。 その交点(座標で言うと(0,0)です)を中心にして 半径10cmの円があります。 この円を縦に分割するような直線があります。 この直線は中心から3cm右にあります(Y軸と平行です) この直線で円は右と左に分割されますが、 その分割された左右の面積を求めたいのです。 昔の記憶をたどりながらやってみましたが さっぱり分りませんでした(^^; すいませんがお願いできますか?

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • hinebot
  • ベストアンサー率37% (1123/2963)

積分より三角関数を使った方が楽かも。 円の中心をO,円と直線の交点でyがプラスの方をA、直線とx軸との交点をB(座標は(3,0))とします。 また、円とx軸との正の交点をPとします。 ここで、∠AOC=θとします。 △AOBで、AO=10,OB=3なので 三平方の定理から AB=√(100-9)=√91 よって、sinθ =√91/10から △AOBの面積 = (1/2)*10*3*√91/10 =(3√91)/20 扇形AOPの面積={100π*Arcsin(√91/10)}/360 =5π*Arcsin(√91/10)/18 あとは 右側(小さい方) =(ABPで囲まれた面積)*2 =(扇形AOP-△AOB)*2 左側(大きい方) =円-右側 = 100π -(扇形AOP-△AOB)*2 で計算できます。 ※Arcsin は sinの逆関数で、ExcelのASIN関数で計算できます。(ただし、度単位ではなくラジアン単位なので注意してください) Arcsin(√91/10) を計算すると約72.5°となりました。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答下さった皆様、ありがとうございました。 ココにまとめてお礼させて頂きます。 皆様の仰るとおり、微分など使わなくても 求められますね(^^; すっかり頭が固くなってしまいまして情けないです(^^; 円・直線・面積という言葉で「なんだか昔、微積 使って解いたような…絶対そうに違いない!」 と頭が固まってしまいました。。 皆様のおかげで解けました。 ありがとうございました。

その他の回答 (2)

  • 回答No.2

円の中心を点O 中心から3cm離れた直線と円の交点を、AおよびBとします。  Aの座標は(x1,y1)  Bの座標は(x1,-y1) x1=3 y1>0 半径r=10ですから、y1=√(r^2-x1^2) となります。 面積を求めるには、扇型AOBから三角形AOBを引けばいいわけです。 角AOB=θとすると、 tan(θ/2)=y1/x1=√(r^2-x1^2)/x1   θ/2≒1.266rad 扇型AOBの面積A0は、  A0=(θ/2)・r^2   ≒126.6cm^2 三角形AOBの面積A1は、  A1=1/2×√(r^2-x1^2)×2   =28.6cm^2 直線で区切られた右側の面積は  A=A0-A1   ≒98.0cm2

共感・感謝の気持ちを伝えよう!

  • 回答No.1

微積は使わなくても解ける。 (0、0)から右上だけで考えます。 円と直線の交点を中心と結んで扇形を二つ作ります。。 さらに交点からX軸に垂直に交わる交点を作ります。 これで図形が3つに分割さるので。 後はピタゴラスや正弦定理を使って計算すれば。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • x≧0、y≧0と円で囲まれた面積の求め方。

    x≧0、y≧0と原点を中心とする円x^2+y^2=1とy=kx(k>0)で 囲まれる面積なら 円と直線の交点のx座標αを求め ∫(from0 to α)√(1-x^2)dx をx=cosθとして置換積分すれば求められますよね? では、x≧0、y≧0と原点を中心としない円で囲まれた面積の求めるにはどのようにすればいいのでしょうか? 積分を使って求めるのでしょうか? それとも他に方法があるのでしょうか? x軸、y軸との正の交点とでできる円の中心角から扇の面積を求めて あとは三角形を足す方法を思いついたのですが 中心角が求められません。 回答よろしくお願いします。

  • 円を縦横線で16等分

    円面積をX,Y軸に平行な線で16等分する問題を考えています。 半径=1の円(x^2+y^2=1)で、まずはX,Y軸で円を4分割。 あと第一象限の4分割円を更に x,y軸に平行な2直線で4分割したい。 この2直線の交点(分割点) P(x,y)を求めよ。

  • 円を直線で切り取った部分の面積の求め方。

    積分の知識を失って早や数年、どなたか以下の面積の求め方を教えてください。 円:原点Oを中心とする、半径aの円 直線:X=k(-a<=k<=a) この直線によって切り取られる円の左側の面積Sをkであらわしたいんです。 よろしくお願いいたします。

  • 円と線で囲まれた部分の面積

    久しく数学から離れていて忘れてしまったのですが 円の上を線が横切っていて、それで囲まれた部分の面積を求めたいのです。うまく説明できないですが積分で計算できた気がするのですが…(自信は全くありません) 例えばy=2x+3の直線が原点を中心にした半径12の円を切りとる面積をどうやって求めればいいでしょう?

  • 数学II 円と直線

    数学の問題で、途中まで解いてみたもののわからなくなりました。 ご解説をお願いできたらと思います。 問題1, 円 X^2+Y^2ー4KXー2KY+20K-25=0 は、 どんな実数Kに対しても2つの定点を通る。その定点の座標を求めよ。 やってみたこと  円の式を、(   )^2+(    )^2=半径2乗の形にしてみたがその後どうして良いかわからず。 Kについて整理してみたもののその後どうして良いかわからず。 問題2、 中心がX+Y=5 上にあり、半径が√10である円がある。 この円が、X軸から長さ6の線分を切り取るとき、円の半径を求めよ。 やってみたこと 中心の座標を(M、N)とした。 X軸は、式がY=0の直線だとわかった。 そこで中心と半径を、 仮に決めた円の式(XーM)^2+(Y-N)^2=R^2 に代入した。 すると(XーM)^2+(Y-N)^2=10 となった。 また、円と直線の交点座標を求めるため、↑の円の式にY=0を代入した。 この後どうして良いかわからなくなった。 上記のような状態です。 ご解説をお願いいたします。

  • 円の面積

    中学1年の娘の数学の問題です。 「同じ点Oを中心とする、半径3cmと半径5cmの2つの円があります。この2つの円の間にある部分の面積を、πを使って表しなさい」(2つの円の間というのはドーナツ状になっています) 普通の解答の出し方として、単純に半径5cmの円の面積と3cmの円の面積の差を求めればいいんですが、偶然に下記のような考え方での解答の出し方でも一致しているようです。 半径3cmと半径5cmの間には、2cmの差があります。その場合、(5+3)×2×πにすると16πで答えが等しくなります。他にも半径4cnと半径7cmの円の間には3cmの差がありますが、(4+7)×3×πで33πと答えが等しくなります。 これでは、円周を求めていることになるかと思うのですが。。。 どなたか、わかりやすい解説願います。

  • 円の面積重心なのです

    以前の円の質問の続きなのです。 平面上、 円Aは中心座標(xa,ya)で半径Ra 円Bは中心座標(xb,yb)で半径Rb です。 円Bは円Aの内円の関係です。 円Aから円Bを引いた残りの領域(面積) の、面積重心とその重心座標を求めたいので すがわかりません。 お教えいただきますよう、宜しくお願い致します。

  • 面積が…

    xy平面で、原点中心半径10の円と、(5、10)中心半径5の円で囲まれた部分の面積を求めたいのですが、どうやったら上手くできるのでしょう? ニ円の交点が(0、10)(8、6)だということは分ったのですが、3:4:5の直角三角形は角度がわからないのでうまく求められません。 積分してみようかとも思ったのですがなんだか混乱してしまい…。(ちなみに数3までなら既習です) 姉に聞かれた問題で馬鹿にしたもののわからず困っています;;

  • 球面上の円の面積

    球面上の円の面積を求めようとして疑問に至りました。 ある緯度で円を描くときに、その緯度より北極側の面積を求めるとします。その答えが、私にとっては不思議なのですが、北極からその緯度上の一点への直線距離を半径とする、平面上の円の面積と同じになると知りました。 確かに全球ならば4πr^2で、北極から南極までの直線距離2rを半径とした円の面積と同じですし、半球なら2πr^2で、北極から赤道までの直線距離√2rを半径とした円の面積と同じです。 「なぜ」そうなるのか、求積法を教えていただけないでしょうか。積分を利用したものも知りたいのですが(文系出身なので積分知識が貧困なのです)、幾何的というのでしょうか、図形的な求め方に興味があります。直感的に理解できなくて悩んでいまして……。 直感的なというのは、例えば、平面上の円の面積を求める際には、多くの半径で円を刻んで交互に並べ替え、長方形にしてしまうというやり方を小学校で習いますが、ああいった理解の仕方を想定しています。 どうぞよろしくお願いします。 ※地図の作成で、正積方位図法を扱いまして、この疑問を持ちました。

  • 重なった円の面積

    写真中の斜線部分の面積を求めることはできますか? フリーハンドでみにくいですがよろしくおねがいします。 中心は同一直線状にあり、二つとも半径3の円で円周は他の円の中心を通っています。