• ベストアンサー

素数は無限に存在する

素数が有限であると仮定し、その最大のものをNとする。 a、b、cを自然数とした場合、すべてのaについて N+a=b*cとなるb、cが存在する。 この式を変形すると N=b*c-aとなる。 ところがa=bの場合、aはNの約数となり最初の仮定と矛盾する。 よって素数は無数にある。 この証明は正しいのですか?というのはこの矛盾をつくことによって、有限ではない!!って感じがしないんですよね。a=bの時はNは素数ではない!!っていうのは分かるんですけど、a≠bでちょっと特別の場合(a=1,b=4,c=5など)は成立しちゃうんじゃない!?っていうのもあるし(aの値が変化することによってb、cの値も変化するだろうし・・・)、Nは素数ではないっていう証明をしただけで、「最大の」素数ではないって感じがしないんですよね・・・ こっちの証明は普通に納得するんですが・・・ 定理が成立しないとすると,素数は有限個である.それらの素数をP1,P2,P3,・・・,Pnとする.このとき,Q=(P1P2P3…Pn)+1を考えると, QはP1,P2,P3,・・・,Pnのどれでも割り切れない.したがって, Qを素数の積として表したとき,この積に現れる素数はP1,P2,P3,・・・,Pnのいずれとも異なる. これは矛盾である。したがって定理が証明された. なんかすっきりしなて非常に困ってます。誰か教えてください。お願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • nabla
  • ベストアンサー率35% (72/204)
回答No.3

Nが最大の素数ということは、Nに何らかの自然数を加えた者は全て合成数といことです。(ここでNが『最大』という条件が効いてくるのです。もし『最大』でなければNに任意の自然数を足して必ず合成数になることが保証されません) これが『任意の自然数aに対してN+a=bcとなる1でない自然数b、cが存在する』という命題の意味ですね。 これを変形して N=bc-aとします。 ここでa=bという場合を選びます。 するとその時Nはbの倍数となります。 bは1でない自然数という条件からNは合成数となります。 これははじめの仮定「Nは最大の素数である」がおかしかったことを意味します。 つまり最大の素数は存在しません。 ただこの証明は一ヵ所不備があるように思います。 任意のaに対して選ばれたb、cの中にa=bを満たすペアが存在することを示していません。 その辺はどうなんでしょう?

その他の回答 (8)

  • gicchon
  • ベストアンサー率34% (25/72)
回答No.9

1.最後の素数Nがあると仮定する。 2.最初の素数2から最後の素数Nまでをすべてかけると   2×3×5×7×・・・×Nとなる  式より、この数はNまでのすべての素数で割り切れることがわかる 3.ところが、この数に1を足して   2×3×5×7×・・・×N+1  という数をつくると、N以下のどんな素数で割っても1余り、割り切れることはない  つまり、この数はNより大きい素数で割り切れるか、この数自身が素数なのかのどちらかである 4.いずれにせよ、仮定したような最後の素数は存在しない  よって、素数は無限に続く (証明終わり)

  • Rossana
  • ベストアンサー率33% (131/394)
回答No.8

例えばの話なので参考程度にお願いします. さっきより考えが少しまとまった気がします. 暴走が少し収まりました. 最大の素数N=751(これは明らかに最大の素数でないですが,最大の素数と解釈下さい.しかも素数でないかもしれませんが…まぁお許し下さい)とする. aを任意として順に考える. a=1のときb=a=1としてN+a=752よりc=752でc存在 a=2のときb=a=2としてN+a=753よりc=376.5という小数にならないといけないけどcは自然数でないといけない.つまりcは「存在しない!!!」 なんとかちょっとうまく行きました. ということで,強制的に具体例にして考えるとこんな感じになりました. ANo.7の専門家のojamanboさんもおっしゃられるようにやはりこの証明は不備があるということなのでしょうか.

noname#24477
noname#24477
回答No.7

他の人も述べているけれど 証明になっていないでしょう。 a=bの場合といっているけれど aを決めるとb,cは自動的に決定され自分で選ぶ ことは出来ません。 b=aとできる場合があることを証明しなければ いけません。それは明らか?ではないでしょう。

  • Rossana
  • ベストアンサー率33% (131/394)
回答No.6

>だけどbって1から777までのすべての自然数をとらないといけない. ここなんか変ですね.強制的にN=751とすると(こんなやり方メチャクチャ変ですが最大じゃないし751は素数じゃないかもしれないし…) aは1から76までとれる.だからbは1から76までとれる. なんか暴走し出しましたf(^^;

  • Rossana
  • ベストアンサー率33% (131/394)
回答No.5

ANo.3のnablaさんがおっしゃられるように >ただこの証明は一ヵ所不備があるように思います。 >任意のaに対して選ばれたb、cの中にa=bを満た >すペアが存在することを示していません。 >その辺はどうなんでしょう? っていうのはたしかに問題ですね. この問題はb=aと決めるのはいいとして,このときに, N+a=b×c を満たすcが存在するか否かという問題にすることができると思います. N+aは合成数なので合成数とは何かということを細かく考える必要がありますね. 例えば,合成数777について考えるとbはb=aというようにaと連動して動くので間接的に任意と考えられます. 777=(7×3)×(37) b=(7×3)が決まったらc=37 だけどbって1から777までのすべての自然数をとらないといけない.このときに,cは存在しない事があるぞ! う~ん.なんかこの辺りがよくわかんなくなってきましたf(^^;

  • Rossana
  • ベストアンサー率33% (131/394)
回答No.4

なんか中途半端な書き方になってしまい綺麗じゃないのでまとめます. 流れ1:Nは最大の素数⇒N+1,N+2,…は合成数. 流れ2:任意の自然数aの値をまず定める. 流れ3:aの値に応じてbの値は自由に決めることができる(ただし,b=1とすると注意←∵cは合成数にしなければいけなくなる).もし,bの値をb=aとしたらという場合を考える. 流れ4:N+a,bは既に確定.N+a=b×cの束縛関係よりcの値は自動的に確定.自分で決める事はできない!!

  • Rossana
  • ベストアンサー率33% (131/394)
回答No.2

POINT1: >素数が有限であると仮定し、その最大のものをNとする。 ということは,もうこれ以上大きな素数はなく,Nより大きな自然数N+1,N+2,…はすべて「合成数」である!! ということが使える. >a、b、cを自然数とした場合、すべてのaについて >N+a=b*cとなるb、cが存在する。 N+1≦N+aなのでN+aは合成数!! aによってb,cは自由自在にうまくとれるのでここは問題なしですね. >ところがa=bの場合 ここがなんかネックですよね. 順番としては「aが決定」→「bが決定」なので, 「a=bの場合」という言い方はなんか変な気がします. 「aが予め定められていて」→「b=aとなるようにbを取ると」という言い方にすれば納得できる気がします. そのあとに「cは自動的に決定されざるを得なくなります」 こんな感じの論理にすればなんとか納得できるのでは.

  • elmclose
  • ベストアンサー率31% (353/1104)
回答No.1

「すべてのaについてN+a=b*cとなるb、cが存在する。」という命題が真か偽かという問題ですよね。 「すべてのa」を否定するためには、反例がひとつでもあれば充分であり、a=bのときがその反例です。 もともと、素数の個数が有限であって、Nが最大の素数であると言う前提からスタートしてますから、それが否定されると言うことは、素数の個数が有限であることの否定です。 論理学を理解すると、よりわかりやすいかもしれません。

関連するQ&A

  • 素数は無限

    質問2点。 1. 「素数は無限に存在する」証明をwikipediaで調べると、 背理法で素数が無数にあることを証明した、 素数の積に1を加えた数が素数であることを証明した」などの誤解をする者がいるが、 いずれも正しくない と書かれています。 wikipediaが常に真実とは限りませんが、 Google検索で素数の無限である証明で検索すると、上記の誤解している人による解説ばかりです。 何を(どちらを)信じればよいか分からずに困っています。 2. wikipediaによる正しい証明によると、、、 素数の個数が有限と仮定し、p1, … pn が素数の全てとする。その積 P = p1 × … × pn に 1 を加えた数 P + 1 は、p1, …, pn のいずれでも割り切れないので、素数でなければならない。しかし、これは p1, …, pn が素数の全てであるという仮定に反する。よって、仮定が誤りであり、素数は無数に存在する。 これは、背理法による証明だと思うのですが、、、、 お手数ですが、よろしくお願いします。

  • 素数 無限

    「素数は無限にある」証明について。(たびたびすみません) 素数が有限個で n 個と仮定し 素数を P1, P2, P3, …, Pn とする P = (P1 x P2 x P3 x…x Pn) + 1 とおくと、 PはP1からPnで割り切れない ・・・理解できます。 従って、 Pは n+1 個目の新たな素数  ・・・★ここが理解できません。 Pは、1~P-1の数で割り切れないなら、素数(定義そのもの)ですが。 Pは、P1, P2, P3, …, Pn以外の合成数(素数以外の数)で割り切れる可能性もあると思います。 中学生ぐらいの証明のようですが、自分の頭の悪さに苦しんでいます。 2 × 3 × 5 × 7 × 11 × 13 + 1 = 59 × 509

  • 素数が無限個存在すること(エルデシュによる証明)

    素数が無限個存在することの証明について、 素数―wikipedia―によれば、エルデシュによる素数の逆数和の 発散性の証明は、素数が無限個存在することの証明にもなっているらしいです。 (証明において、素数が無限個存在することを用いていないため・・・?) http://ja.wikipedia.org/wiki/%E7%B4%A0%E6%95%B0 その証明は、 背理法による。 n 番目の素数を pn とする。 素数の逆数和が収束すると仮定すると、 任意の ε > 0 に対してある自然数 N が存在して、 1/pN+1 + 1/pN+2 + 1/pN+3 + ... < ε となる。 ★ いま、 ε = 1/2 としよう。任意の自然数 n に対して ・・・・・・・・ と説明されているのですが、 ★マークの部分がよくわかりません。 素数が無限個存在することを使用しているのでは!? もし有限なら、はるかに小さいεがとれないのではないでしょうか? どうかご教授ください。

  • 素数 反例

    素数が無限であることの証明について。 http://homepage2.nifty.com/mathfin/hairihou/hairihou03.htm 素数が無限個でないことがある。すなわち,素数が有限個であることがあると仮定し、                                           (反例の存在を仮定)  その個数をn個とする。すべての素数を小さい方から順に          P1,P2,P3 ,・・・・・・,Pn      とおける。ここで,           P = P1×P2×P3×・・・・・・×Pn + 1    により,自然数Pをつくると,    Pは, P1,P2,P3 ,・・・・・・,Pn のいずれで割っても1余る。      よって,Pは1と自分自身以外に約数を持たないから素数である。    これはPnよりも大きい素数が存在することを意味しており,矛盾が生ずる。    よって,素数が有限個であることはない(反例は存在しない)     ゆえに,素数は無限に存在する --------------------------------------------- P=2 × 3 × 5 × 7 × 11 × 13 + 1 = 59 × 509 という反例がありますが、 上記の証明は間違いということですか?

  • 素数は無限に多く存在することの証明(ユークリッドの別証)を二つの添削

    ユークリッドの証明は背理法を用いた証明。 素数を有限個とするならその最大素数をpnとして素数を小さい順にp1,p2,…,pnとした時 N=p1*p2*p3*…pn + 1 全ての自然数は素因数に分解できるのでp1~pnの少なくとも一つ因数に持つはずだが、どれで割っても1あまる。これはpnが最大の素数であることに矛盾 素数は無限に存在する。 といった証明。今回はこれの別称として以下の漸化式を用いたものを解けという問題です。 ◆a_{n}:=2^(2^n) + 1, n=1,2,3,… を用いた証明 この時任意のm≠nに対しa_{m}, a_{n}は互いに素である。実際n>mの時 a_{n} - 2 = 2^(2^n) - 1     ={2^2^(n-1) + 1}{2^2^(n-1) - 1}     =a_{n-1}*(a_{n-1} - 2)     =a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 2) となるのでa_{m},a_{n}の公約数dは2の約数でなければならない。他方a_{m},a_{n}は奇数であるから(←漸化式より)d=1となる。すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ ◆正整数の列a_nを次のように定める a_{n+1} = a_{n}*(a_{n} - 1) + 1, a_{1} = 2 これを用いて素数が無限であることを示すのですが 任意のm≠nに対して a_{n} - 1 = a_{n-1}*(a_{n-1} - 1)       = a_{n-1}*a_{n-2}*(a_{n-2} - 1)       = a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 1) よりa_{n},a_{m}の公約数は1の約数でなければならない。よってa_{n},a_{m}は互いに素である。 すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ これら2つの証明はこれであっているでしょうか?

  • 素数の分類に関して

    前回質問させていただいた証明に関することなのですが、最後の一文が分からないためもう一度質問させていただきます。 [類題] 「8n + 3 型の素数は無限に多くある事を示せ。」の略解。 *)文中のp^は複素数pの共役な複素数です。例えば、p=1+iの場合、p^は1-iのことです。 また、a2 はaの二乗という意味です。  証明)もし 8n + 3 型の素数が有限個であったとし、その全体を p1, p2, ... , pn とする。 P = p1p2 ... pn + √2 i と置いて、これを単項イデアル整域 Z[√2 i ] で素元分解する。 N (P) = PP^ は奇数であるから(正確には、 N (P) ≡ 3 ( mod. 8 ) 、) P の有理整数の素因数は奇数である。この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。又、 P は有理整数に同伴でないから、a + b √2 i 型 (b ≠ 0, 有理整数の素因子と同伴でない物) の因子がある。PP^ は奇数であるから a は奇数である。更に、この a + b √2 i 型の因子の b が偶数であるとすると、 N( a + b √2 i ) = a2 + 2b2 ≡ 1 (mod. 8) であるから、 この形の b が全て偶数であるとすると PP^ ≡ 3 (mod. 8) と矛盾する。従って b が奇数の物 a + b √2 i が有るが、素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。故にこの型の素数は無限個。 素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。 における a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8)となった場合なぜ有限性に矛盾していると言えるのでしょうか。 a2+2b2が素数でないならば矛盾はしてないのでしょうか。 よろしくお願いします。

  • 素数の分類と無限性に関して。

    素数の分類と無限性に関して。 ※^は乗数の意味です。 8n+1型の素数が無限に存在することの証明 原始根の存在(素数 p を法とする整数環 Z/pZ の乗法群が位数 p - 1 の巡回群であること)を使う。 x を整数とする時x^4 + 1 の奇素数因子を p とする。 x^4 ≡ - 1 (mod. p) より、両辺を2乗することでx^8≡1となる。 x の p を法とする整数環 Z/pZ の乗法群での位数は 8 で有るから、 p ≡ 1 (mod. 8) となる。ここで、 p ≡ 1 (mod. 8) となる素数が有限個であったとする時、その総乗積を P として、 (2P)^4 + 1 の奇素数因子を考えると矛盾が出る。 私は2PをX"とおいて上と同様に考えました。 この証明の流れや、8n+1型の素数が無限に存在することは理解できるのですが、上の証明における「位数は 8 で有るから、 p ≡ 1 (mod. 8) となる」の部分がどのようにして言えるのかが分かりません。フェルマーの小定理を用いているのでしょうか? よろしくお願いします。

  • 素数の分類に関して

    [類題] 「8n + 3 型の素数は無限に多くある事を示せ。」の略解。 *)文中のp^は複素数pの共役な複素数です。例えば、p=1+iの場合、p^は1-iのことです。 また、a2 はaの二乗という意味です。  証明)もし 8n + 3 型の素数が有限個であったとし、その全体を p1, p2, ... , pn とする。 P = p1p2 ... pn + √2 i と置いて、これを単項イデアル整域 Z[√2 i ] で素元分解する。 N (P) = PP^ は奇数であるから(正確には、 N (P) ≡ 3 ( mod. 8 ) 、) P の有理整数の素因数は奇数である。この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。又、 P は有理整数に同伴でないから、a + b √2 i 型 (b ≠ 0, 有理整数の素因子と同伴でない物) の因子がある。PP^ は奇数であるから a は奇数である。更に、この a + b √2 i 型の因子の b が偶数であるとすると、 N( a + b √2 i ) = a2 + 2b2 ≡ 1 (mod. 8) であるから、 この形の b が全て偶数であるとすると PP^ ≡ 3 (mod. 8) と矛盾する。従って b が奇数の物 a + b √2 i が有るが、素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。故にこの型の素数は無限個。 この証明における、この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。がなぜ言えるのかという点と 最後の一文である 素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。 における a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8)がなぜ分かるのかが理解できません。 よろしくお願いします。

  • 双子素数の無限性について

    以下のような証明を作ってみました。 この問題が数学史上未解決の難問であることは知っているので、必ず どこかが間違っているのでしょうが、自分で作っておいてなんですけど、 どこが間違っているのかすら理解できませんでした。(馬鹿) 誰かどこかが間違っているか、なるべくわかりやすく指摘してもらえない でしょうか? 証明 ある3*10^n乗という数について考える。 双子素数は有限で、この素数以降には双子素数は存在しないものと 仮定する。 数直線上の3*10^n乗の点を0とすると、これ以降の素数の出現は、 +1,+7,+11,+13,+17……のように今までの素数と、1を足した場所で、 素数となる可能性のある点が出現する。 これのうち双子素数となる可能性のある点は、全てどちらかがそれ以 前に登場した2,3,5を除く二つ以上の素数の積でなければならない。 どちらも素数であるとすると、双子素数が存在しないという前提に反する からである。 双子素数のうち一つにつき、その点が何らかの素数の積であるために は、それぞれ異なる素数が二つずつ必要になる。 また、これは3*10^n乗以前に存在した素数でなければならず、2,3,5の 倍数でもない。 そして、一つとして同じ素数を使ったペアは存在しない。 例えば、 3*10^n乗+11がa*bという素数の積であったとき、 3*10^n乗+17がaの積もしくはbの積であることは絶対にない。 こうして6*10^n乗未満の範囲で、3*10^n乗の一つ以前まで全ての素数 を足していくと、双子素数の点を否定するために使う素数は、 あらわれるかもしれない双子素数の総数*2となる。 ではここで双子素数の点を否定するために使える素数の組み合わせに ついて考えてみる。 (1) まず、この範囲内のいずれか一点を否定するには、6*10^n乗までの数に 収まる必要がある。 それよりも一つ上の素数と組み合わせると6*10^n乗を上回ってしまう限界 値をpとする。 この上に存在する素数は全て、このpの範囲内の数との組み合わせでしか 6*10^n乗までの範囲内の素数の積になることはできない。 つまり、この限界値pまでの素数の2倍以上の組み合わせはありえない。 (実際に最小と最大同士を組み合わせていくと一定以上に大きい数にしか ならないので、組み合わせることのできる組数は必ずこれより小さくなる) 母数を2倍した場合、pの1,6倍付近が次の限界値p2となり、やはりそこ までの素数の数*2が組み合わせの最大値である。 (2) いかなる素数を組み合わせても6*10^n乗を上回ってしまう組み合わせ しかなくなり、それがまだ双子素数としてあらわれる可能性のある点の 総数を超えていなければ、必ず双子素数の数は増加する。 言い換えると、 限界値pまでの素数の個数<双子素数としてあらわれる可能性のある点の総数 であると、双子素数は必ず増加する。 (3) これが3*10^n乗で、 限界値pxまでの素数の個数>双子素数としてあらわれる可能性のある点の総数 であった場合、双子素数は増加するとも、増加しないともいえない。 双子素数が有限であることを前提にすると、3*10^n乗以降の双子素数として あらわれる可能性のある点は、全てどちらか一方が素数でないことは確かで ある。 では6*10^n乗以降の場合はどうか? 3*10^n乗の範囲で、a*bで否定された素数を2倍すれば絶対に偶数、つまり 2の倍数になる。 つまり、次の範囲では絶対に同じ組み合わせを使うことができないので、増え た限界値px2の範囲内で、新たに異なる組み合わせを見つけてくる必要がある。 ・11*7 11*89のように一方が同じ組み合わせは使える可能性はある。 そして、同じように、 12*10^n乗 24*10^n乗 と無限に繰り返す。 母数を2倍しても限界値px2までの素数の個数は当然に増加しない。 px2はpの1,6倍程度の位置に存在するからである。 (n<2nの間にならば、最低でも1の素数が含まれているが、この場合組み合わせ として使える素数が増えることも確実ではない) 途中で登場した組み合わせは全て2の倍数になっていくので、同じ組み合わせは 二度と使えない。 従って使える組み合わせは、必ず一定数減り続ける。 そのため、これを無限に繰り返せば、いつか限界値pxまでの素数の組み合わせ では絶対に否定できない点があらわれるはずである。 そこは必ず双子素数となる。 以上により、3*10^n乗以降でも、双子素数は必ず増加する。 これは双子素数が有限であるという前提と矛盾する。 よって、双子素数は無限である。

  • 素数の分類と無限性に関して。以前質問させていただいたことの延長になりま

    素数の分類と無限性に関して。以前質問させていただいたことの延長になります。 ※^は乗数の意味です。 8n+1型の素数が無限に存在することの証明 原始根の存在(素数 p を法とする整数環 Z/pZ の乗法群が位数 p - 1 の巡回群であること)を使う。 x を整数とする時x^4 + 1 の奇素数因子を p とする。 x^4 ≡ - 1 (mod. p) より、両辺を2乗することでx^8≡1となる。 x の p を法とする整数環 Z/pZ の乗法群での位数は 8 で有るから、 p ≡ 1 (mod. 8) となる。ここで、 p ≡ 1 (mod. 8) となる素数が有限個であったとする時、その総乗積を P として、 (2P)^4 + 1 の奇素数因子を考えると矛盾が出る。 私は2PをX"とおいて上と同様に考えました。 同じ方法を用いることで証明することはできたのですが、 この証明の中で用いている「位数は 8 で有るから、 p ≡ 1 (mod. 8) となるの部分に関して ラグランジュの定理         位数nの有限郡Gの任意の部分郡Hの位数はGの位数の約数である を用いた場合、GとHに当たる部分はどこになるのでしょうか。今の段階では、nがp-1にあたり、Hの位数が8と考えています。pが素数で、8はp-1の約数になるとの考えは当っているでしょうか・・? よろしくお願いします。