『数学・算数』に関する質問・疑問一覧

次へ  ]
91599件中 1~20件目
  • 6÷2(1+2)=?

    「ガジェット通信」 2011年5月6日より 「6÷2(1+2)=?」という小学生レベルの問題? 大勢の人が「1」と答え半分以上が不正解 http://getnews.jp/archives/114382 私も最初は1と答えました。正解は9ということです。 小学生レベルの問題に間違うとは・・・と落ち込んだのですが・・・ やはり1で合っているような気がしてなりません。 本当の正解はなんでしょうか?

    2011/05/07 00:09
  • もう1人が男である確率

    ある雑誌のこの設問で意見が対立しています。 「あるタレントに隠し子が2人いることが発覚! 1人は女の子。もう1人は男女どちらの確率が高いか?」 A.男  B.女  C.確立は半々 答えはもちろん「C」と思いきや、なんと「A」だというのです。 その理由は「すでに2人いる子供の男女の組み合わせ」は1.女・女 2.女・男 3.男・女 4.男・男 となりすでに1人は女なので可能性があるのは 1.女・女 2.女・男 3.男・女 の組み合わせになる。つまりもう1人が男である確立が3分の2だから、正解はA。 最初はこの答えに納得できなかったのですが、しばらく考えて確かにそうだと思いました。 でもあくまで違う、確率は50%と主張する方がいてそれに反論もできずにいます。 果たして真実はどちらなのでしょうか? 納得できる理由も書いてもらえるとありがたいです。

    2007/03/09 00:48
  • 高校数学の不等式の問題です

    nは25以上の定数、x,y,zは負でない整数でx+y+z=25のとき、(1-x/n)(1-y/n)(1-z/n)の最大値を求めよ 解説はたとえばx-z>=2とすると,yをそのままにし、xを1小さくzを1大きくすることによって与式をより 大きくすることが出来る、したがって3数x,y,zのどの2数の差も1以下のとき与式は最大となるが そうなる{x,y,z}の組は{8,8,9}しかありえない  とあるのですが、x-z>=2とすると,yをそのままにし、xを1小さくzを1大きくすることによって与式をより大きくすることが出来るとありますが、これが何故そんな事が言えるのかまったく分からないです その後のしたがって3数x,y,zのどの2数の差も1以下のとき与式は最大となるも何故なのか分かりません 是非とも詳しい解説のほうよろしくお願いします

    2014/08/26 18:38
  • 虚数理論に置いて。

     私の理論かどうか知りたくて質問させて頂きます。虚数に置いて√(-1)=√((-1)×(+1))=(-1)と(+1)であるという考え方をした数学者を教えて下さい。

    2011/09/27 00:46
  • アキレスと亀がなぜ不思議でないのか?

    この問題については、何度も質問されていますが、ちょっと違った角度から是非質問させてください。 わたしには、アキレスと亀がものすごく不思議です。ですが、不思議だと思わない人のほうが圧倒的に多いことを、もっと不思議に思っています。 わたしたちは実際にはアキレスが亀を追い抜くことを知っていますから、そこを起点に考えるので、ゼノンのいうことには間違いがあるに違いない、というところから発想して、無限級数だのなんだのを持ち出して説明しようとします。 ですが、仮に、このように簡単な事実で検証できないような別の問題があったとして、このレベルの論法で説明されていたのだとすると、私にはそのおかしさを指摘することはぜったいできないです。私には完璧な論法に見えるので、自慢じゃないですが、はい、証明終わり、Q.E.D.とされても、納得してしまう自信があります!(笑)だから、そうした場合にも、みんなすぐにその論法はおかしいなんて指摘できる自信があるのでしょうか?ということをすごく疑いたくなります。逆に言うと、これまでに解決されてきた、数学の多くの証明において、こうした問題が潜んでいないということすら、私は納得してしまっていいのだろうか、とすら思います。 この、ゼノンの論法はどうしてもそんなにいい加減な論法には聞こえません。だから、なぜ多くの人が全然不思議と思わないのか、また、なぜ、多くの人が、自信を持って、ああそれはね、無限級数で云々と説明し始めることに抵抗を感じないのか、そこがまったくわかりません。 皆さんはどうお考えになるでしょうか?これはひょっとすると、数学の問題ではなくて、社会学とか、とかそういう分野の問題なのかもしれませんが、皆さんのお考えをお聞かせください。

    2014/07/05 23:16
  • 数学の講師仲間である議論,分母0の反例

    こんにちは。高校の数学の講師仲間である議論になりました。 ----------- x>yならばx/y>1 が偽であることを示せ ----------- これを示すのに、 反例:x=1、y=0 というのを正解とするのか、不正解とするのか、、議論になりました。 ある人は、x=1、y=0は仮定を満たすが、結論には代入できなくて、判定できなくて、反例としてはよくない、といいます。 ある人は、x=1、y=0は仮定を満たすが、結論を満たさないので、反例としてもよい、といいます。 どうなのでしょうか。

    2012/04/19 23:47
  • 0の0乗は1、にしたい(続き)

    http://oshiete1.goo.ne.jp/qa4347011.html の続きです。 0の0乗の値について、不定だとか未定義だとかの意見があります。 でも、1と定義しても無矛盾だし、1以外では矛盾が生じます。 そこで、べき乗(累乗)の定義を  x^0=1  x^n=x^(n-1)×x (nは自然数) としてしまえば、0^0は当然1になります。 #負の整数乗、有理数乗、実数乗などへの拡張は、従来のような方法で行われるとします。 この定義の仕方には、問題があるのでしょうか? なお、常識的には…という話は、遠慮願います。 #Wikipediaも変わりますので。 これまでの議論で主張したこと: (1) 従来のべき乗の定義は、1から始まるので不自然。加法や乗法は0から始まる。 (2) 従来のべき乗の定義との違いは、0^0の値についてだけである。 (3) 0及び正の整数乗は、すべての実数に対して計算できる。負の整数乗は正の整数乗の逆数として計算できる。(0のべき乗以外) (4) 0^y=0という式はy<0で成立しない。それをy=0まで拡張するのは不自然。 (5) 0^0=0は、関数0^yについて、y=0で連続性が破綻しないから不適当。 (6) lim[x→0,y→0]x^yは不定であるが、0^0=1と矛盾しない。 (7) x^y形式の連続な式で、x=0、y=0の時、その値が1以外に定まる式は存在しない。 (8) 1である根拠は、0^0=0^(-0)=1/0^0。 たぶん、このどれかが成立しなければ、最初の定義は怪しくなります。 #(7)は、表現に不備がある可能性があります。

    2008/09/25 10:58
  • 高校の算数の問題

    6÷2(2+1) の答えを教えてください

    2014/01/06 06:25
  • 正射影について。

    以下のURLの続きです。 https://okwave.jp/qa/q9753034.html 次のような図を考えれば全て納得できるのですが、あっていますでしょうか?教えていただけないでしょうか?すみません。

    2020/06/06 16:43
  • 関数0^xは0^0=1か

    極限値lim[x→+0]0^x が何故 0 になるのか。 0^1=0 は定義から明らかです。 指数法則が成り立つと仮定すると、次のことも証明できます。 m∈N について、0^m=0 n∈N について、0^(1/n)=0 m,n∈N について、0^(m/n)=0 よって、x>0 ならば 0^x=0 なので、極限値も 0 になる、と思います。 #多分、指数法則以外に方法は無い。 でも、これは 0^0=0 を意味しません。 a^(r+s)=a^r*a^s は、a=0,r>0,s<0 では意味を持たないので、 どんなに小さな r=m/n について 0^r=0 が証明されても、r>0 である限り、0^0 が計算できないからです。 つまり、関数0^x について、x=0 での値を求める方法は存在しません。 また、0^0=1 と仮定しても、x>0 について、0^x=0 が証明できるので、 0^0=1 という仮定とlim[x→+0]0^x=0 には矛盾がありません。 結局、連続性がないことは、未定義とする理由として不十分で、 「0^0 を未定義としなければならない理由は、存在しない」 この説明に問題はありますか?

    2008/11/11 10:48
  • 一つの前提から2つの結果は導けるのか

    別の質問で、次のような指摘をいただきました。 私:「ある一つの前提からは、矛盾する2つの結果は導けない」 相手:「2次方程式の根が2つあるように、それは許されている」 私としては、矛盾する結果を導く過程も正しいとするなら、 ある前提からある結果を導いたことにどんな正当性があるんだろうと思います。 具体的に意見が一致しなかったのは、以下の事項についてです。 (1) a^1 = a (2) a^(p+1) = a^p * a ただし p は正の整数 私は a^0 をこれを前提として求めることはできないと思います。 でもその人は、 a^1=0, a^2=0, a^3=0 と続くから、a^0=0 とすることも正しいといいます。 数学的には、どちらが正しいのでしょうか? 該当する質問が終了してしまったので、こちらで質問致します。

    2013/10/24 11:37
  • a^0=1 の証明 ...

    2つの前提を置く。(a^p, a^qは実数) a^p a^q = a^(p+q) a^(-1) ≠ 0 a^0 に対して、次の関係式が成り立つ。 a^0 a^0 = a^0 より a^0 (a^0 - 1) = 0 よって、a^0 は 0 または 1 である。 次に、a^1 ≠ 0 と a^1 = 0 とに分けて考える。 ただし、a^1 は実数とする。 a^1 ≠ 0 であるなら a^1 a^0 = a^1 により a^0 = 1 である。 a^1 = 0 ならば a^(-1) a^1 = a^0 a^(-2) a^1 = a^(-1) であるから a^0 = 0, a^(-1) = 0, … となるが、この結果はもう一つの前提に反する。 これは a^0 = 0 を許しているからであり a^0 = 1 とすれば a^(-1) × 0 = 1 により a^(-1) が未定義となるので回避される。 以上により、a^0 = 1 であることが証明された。 …で良い?

    2013/02/15 16:29
  • i=√((+1)×(-1))=(+1),(-1)

     (+1)×(+1) は+方向と同方向(+方向)に一倍掛けた数値であるのであれば(-1)×(+1)は(-)方向と同方向((-)方向)に一倍かけた数値ということになるので√が外れるはずで(-1)と(+1)であり(-1)と(+1)を掛けたものになる。  その逆もしかりで(-1)×(-1)は-方向と逆方向(+方向)に一倍掛けた数なので(+1)×(-1)も(+)方向とは逆方向((-)方向)に一倍掛けた数になるので√が外れる。 なのでX=a^2とすると√(-X)は (-a) と (+a)を掛けた概念であり結果 (-a) と (+a)になる、また2乗する場合(-a)×(+a)=-a^2となる。  こんな理論ができました より強固なものにするために手伝ってください。参考に→http://okwave.jp/qa/q7036771.html

    2011/10/05 23:31
  • 数学とは何ですか?

    人によって違うとは思うのですが、 あなたにとって数学とは何ですか、 と聞かれたらどう答えますか?

    2009/05/17 21:16
  • Aなら○、Bなら×の見極め方

    問 1から6までの互いに異なる数字が1つずつ書かれた6個の球が 入っている箱がある。この箱の中から1個の球を取り出し、書か れている数字を確認して元に戻すという操作を3回行うとき、取 り出された球に書かれた数字の最大値が4である確率はいくらか。 僕の解き方 3回取り出すうち、最低でも1回は絶対に4でなければならない わけだから、(1/6)×(4×6)×(4×6)=16/216 さらに、4が出るのは1回目・2回目・3回目と3つのケースが 考えられるため、(16/216)×3=48/216→2/9 ところが、この数字は選択肢にはなく、全く違う数字が正解にな っていました。しかし、なぜこの数字が×で、正解が○なのかが 解説を読んでもわかりませんでした…。 ☆僕の解き方は、どこが抜け落ちているのですか? ☆問題文のどこをヒントに「この解き方を使えばいい、僕のやっ たやり方は×である」、と見極めればよいのですか? いつも書いていることですが、間違っているとされていること、 正しいとされていることが、なぜそうなのかがさっぱりわからな いんです。ハッキリと目にみえる証拠がないですし、自分のたて たやり方でも、ちゃんとつじつまはあっています。 一度勉強したものであれば、Aが○・Bが×と知識として知って いるから解けますが、はじめての問題をやる度に混乱してしまい ます。宜しくお願いします。

    2009/02/18 23:51
  • 円の中を通る点の軌跡を、パソコンで表現する方法は?

    半径αの円が平面上の直線を回転しながら移動するとき、直線から高さβの動かない点と接触します。 点βが円の中で描く軌跡の求め方を教えて下さい。  紙1枚に、これを一目瞭然に分かりやすく表現しなくてはいけなくなりました。 軌跡を図で表したいです。出来れば、式も添えて。 エクセル等の何かソフトを使って、どの様な方法でも良いのでやり方を教えて下さい。

    2013/12/15 10:57
  • 公式通りに式をたてているのに必ず行き詰ってしまう

    勉強しているにも関わらず、新しい問題に挑戦しても全然解くことができず、苦戦しています。 問 A地点の下流にあるB地点へ時速25kmのボートで行って帰ってくる。行きには20分、帰りには30分の時間を要した。川の流れは時速何kmか。 段階1 かかった時間がわかっているから、それを比に表して 20:30(時間)→3:2(速さ) 段階2 時速を分単位にする必要があるので、60でわる→125/3。 段階3 川の流れをAとして、 (125/3)+A:(125/3)-A=3:2 段階4 …あれ?もうこれ以上どうにもできないなぁ。 じゃー、次の解き方に挑戦。 段階1 流速=(下りの速さ-上りの速さ)÷2 なので、 (3-2)÷2=0.5 段階2 答えは0.5だ!!……あれ?解答をみたら違う…… せっかく公式通りにやったのに、結局答えが出せないんです。どうして、公式通りにやっているのに答えが出ないんですか?この問題に限らず、公式通りにやっても、必ず途中で行き詰るor答えが出ても解答を違うんです。

    2008/08/25 22:56
  • 中学数学をなめてはいけないなぁ・・・

    12個のおもりがあって、そのうち1つだけ重さの違うおもりがまぎれています。 それを、てんびんを3回だけ使って見分ける方法を教えてください。 ただし、重さの違うおもりは他のおもりより重いか軽いかわかりません。 わかった方は至急おしえてください。おねがいします。

    2001/01/21 14:44
  • べき乗の定義は負の整数へと拡張できるのか(再)

    べき乗の定義は (1) a^1 = a (2) a^(p+1) = a^p * a ただし p は正の整数 となります。 この定義が、このまま負の整数へと拡張できるかどうかを考えてみました。 p=0 へと拡張するならば、 (A) a = a^0 * a という式が加わります。 a≠0 であれば a^0=1 となり a=0 なら 0^0 はどんな値も許され、0^0 は「不定」と言われます。 いずれにせよ、(1)(2)が成立するように a^0 の値を選ぶことができます。 p=-1 へと拡張するならば、さらに (B) a^0 = a^-1 * a という式が加わります。 a≠0 であれば a^-1=1/a となり a=0 なら 0^0=0 とした上で 0^-1 はどんな値も許されます。 さらに続けていくと、 (3) a^0 = 1 ただし a≠0 (4) a^(-p) = 1/(a^p) ただし a≠0, p は整数 (5) 0^(-p) = 0 ただし p は整数 という式が成立するように値を選ぶなら、べき乗の定義を負の整数へと拡張できることが分かります。 ところが、0^0 は 「不定」として扱うのが普通です。 これは、負の整数への拡張を考えていないから、と理解すればいいのでしょうか? そして、負の整数への拡張を前提とするなら、0^0=0 として扱うべきでしょうか?

    2013/11/05 12:01
  • 背理法と対偶証明の違いについて

     背理法と対偶による証明は同じと私は考えています。しかし、インターネットを含み、世間では違うというのが定説かのようです。  従って、違うとお考えの方に、その理屈と根拠を教えて頂きたいのです。

    2010/02/09 23:17