• 締切済み

sinθの軌跡距離は?

y=a sin(x)の曲線の距離を求める式を教えて下さい。

みんなの回答

  • arika
  • ベストアンサー率9% (18/186)
回答No.2

遠い昔のことなんでもしかして、まちがってるかもしれませんが、 円弧ってことは? x=2πなら、円周

  • siegmund
  • ベストアンサー率64% (701/1090)
回答No.1

曲線 y=f(x) の x=c から x=d までの長さは (1)  ∫(c~d) √{1 + (dy/dx)^2} dx で表されます.今, (2)  f(x) = a sin x ですから (3)  L = ∫(c~d) √{1 + a^2 cos^2 x} dx ですね. 残念ながら,この積分は初等関数では表されません.

関連するQ&A

  • a>0とする。曲線y=sin2x(0≦x≦π/2)

    a>0とする。曲線y=sin2x(0≦x≦π/2)とx軸で囲まれた部分の面積Sを、曲線y=asinxが2等分するように定数aの値を定めよ。 回答お願いします。

  • インボリュート曲線の式

    インボリュート曲線の式が x=a(cosθ+θsinθ) y=a(sinθ-θcosθ) とどのようにして導けるのか教えてください。

  • 曲線上の( )内の x の値に対応する点における接戦の方程式を教えてく

    曲線上の( )内の x の値に対応する点における接戦の方程式を教えてください y=sin x (x = π) A.y=-x+π 恐れ入りますが途中式もお願いします

  • 軌跡

    実数a,bがa ^2+b ^2+2a+2b-2=0を満たしながら変化するとき、(a+b,ab)を座標するとする点P(x,y)は、どのような曲線を描くかその軌跡を求めよ。 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ a ^2+b ^2+2a+2b-2=0‥(1) 題意より、 x=a+b‥(2) y=ab‥(3) (1)より(a+b)^2 -2ab+2(a+b)-2 (2)(3)を代入して x^2 -2y+2x-2=0 ∴y=1/2x^2 ++x-1‥(4) (2)(3)よりa,bを二解にもつ二次方程式は t^2 -(a+b)t+ab=0 つまり t^2 -xt+y=0‥(5) a,bは実数であるから、tの二次方程式(5)は実数解を持たなければならない よって判別式をDとして D=x^2 -4y≧0‥(6) (4)を(6)に代入して x^2 +4x-4≦0 2-2√2≦x≦-2+2√2 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ この問題で a,bを二解にもつ二次方程式はt^2 -(a+b)t+ab=0 t^2 -xt+y=0‥(5) a,bは実数であるから、tの二次方程式(5)は実数解を持たなければならない よって判別式をDとして D=x^2 -4y≧0‥(6) の部分がよくわかりません。(5)は二つの実数解をもって、判別式DはD>0ではないのですか。

  • 二次関数と三次関数の2本の共通接線の交点の軌跡

    はじめまして。高校2年生です。 y=x^2とy=(x-a)^3の2曲線がx軸以外に2本の共通接線をもつとします。(aは実数) この時に (1)aの満たすべき条件 (2)aが(1)の条件を満たしながら動くときの2本の共通接線の交点の軌跡 をそれぞれ求めたいです。 (1)は求まりました。 まず、y=x^2上の点を(p,p^2)とし、y=(x-a)^3上の点を(q,(q-a)^3)としました。 導関数を利用してそれぞれの曲線上の点での接線を求め、それが一致すると考え、係数比較により2式を得ました。 その2式を連立させて、qに関する2次方程式を得て、それが2つの異なる実数解を持つときの判別式から、aに関する2次不等式が求まり、aの範囲が出ました。 つまずいているのは(2)の方です。 解答までは自分で導いてみたいのですが、方針がまったく立てられません・・・。 y=(x-a)^3の2接線のx座標をそれぞれa,bと置いて、(1)で得たqに関する2次方程式の解と係数の関係から解くのかな・・・?とも考えましたが、根号が出てきてきれいな形にならず、どうもうまくいきません。 一体どうしたらいいのでしょうか・・・?ヒントをいただけると嬉しく思います。

  • ラザフォード散乱軌跡の包絡線

    高校の物理でラザフォード散乱を習いました。 教科書の散乱の図を見ていたら、一つ一つのα粒子の軌跡が双曲線だということはすぐにわかりましたが、そのα粒子の軌跡全体の、双曲線の包絡線が放物線の形をしているように見えたため、ここ数週間、いろいろな本を利用しながら考察してきました。その結果、衝突係数をtとし、座標平面において目標とする原子核が原点にあったとき、y軸正方向からとんでくるα粒子の軌跡が (x-t)^2*(t^2-a^2)+2*(x-t)*y*t*a=a^2*t^2 (aはα粒子の初速度や原子核の原子番号などで決まる定数)で表すことが出来ました。この式を利用してグラフ表示ソフトでシミュレーションしたところ、確かに、包絡線は x^2=-8*a*(y-a) に一致し、放物線であることが確かめられました。 しかし、式による計算で包絡線がこの放物線に一致することが示せません。先のα粒子の軌跡の式が双曲線だけに「双」曲線となってしまい、余計な軌跡が現れているのも一つの原因のように思われます。だいいち包絡線の式というのは、どのように導けばいいものなのでしょうか。教えてください。お願いします。

  • Sin, Cosを使った証明

    Asin(x)+Bcos(x) が k*sin(x+y)でしめすことができることを証明し、またk, cos y, and sin y をAとBを使って表せという問題があるのですが、わかりません。 最初の証明の方は、k*sin(x+y)を展開して k*sin(x+y) = ksin(x)cos(y) + kcos(x)sin(y) Aをkcos(y)、Bをksin(x)とする。 つまり、Asin(x) + Bcos(x) というやりかたでやってみたんですが、k, cos y, and sin y をAとBを使って表せというのができません。 何かいい方法ありませんか?

  • ∫sinθdθ=2 (積分範囲-∞→∞) は正しい?

    以前、∫(-∞→∞)sinθdθ=2という質問がありました。一見したところ、こうなるわけがない感じがするのですが、必ずしもそう言えないようです。Riemann-Liouville fractional integralは  (1/Γ(α))∫(a→x)dy f(y)/(x-y)^(1-α) で定義されます。a=-∞, 0<α<1とすると  (1/Γ(α))∫(-∞→x)dy sin(y)/(x-y)^(1-α) =sin(x-πα/2) ここでα=1, x=0とすると  ∫(-∞→0)dy sin(y) = -1 よって、  ∫(-∞→0)dy -sin(y) +∫(0→∞)dy sin(y) =2 となって、∫(-∞→∞)dy sin(y) =2 とかなり近くなります。場合によっては、∫(-∞→∞)dy sin(y) =2 となることもあるのでしょうか。

  • 2つの放物線間の最短距離

    2つの放物線間の最短距離をラグランジュの未定乗数法を用いて求める方法を教えていただけないでしょうか. 2つの式はそれぞれ y=x^2・・・(1) y=-3(x-1)^2・・・(2) です. 個人的には 式(2)上の1点を(a,b)と置く. 式(1)上の任意の一点(x,y)との距離を√(x-a)^2+(x-b)^2 と表す. f(x,y)=√(x-a)^2+(x-b)^2 g(x,y)=y-x^2=0 と置き,ラグランジュの未定乗数法を用いて(a,b)でのf(x,y)の最小値を出す. aについての増減表を書いて最短距離と放物線上の2点を求める. という方法で求められるのではないかと思ったのですが,最小値を求めることができませんでした. 図書館などで微積分の演習書を全部調べましたが同じような問題を見つけることができず,困っています. 宜しくお願いします.

  • お願いします

    曲線y=sinx(0≦x≦π)とx軸とで囲まれる部分の面積が曲線y=sin(x-a)(0<x<π)によって二等分されるとき、aの値を求めよ