• 締切済み

No.85432のやっぱりレイリー散乱について

ecosysの回答

  • ecosys
  • ベストアンサー率88% (8/9)
回答No.1

 まず、粒子による光の散乱は、粒子の大きさによりレーリー散乱とミー散乱に分かれます。一口で言えば、粒子の粒径が波長より小さいときがレーリー散乱で、大きいときがミー散乱となります。  従って、どちらの散乱が起こるかは、粒径と波長の比で決まります。これが粒径パラメータが関係する理由です。  レーリー散乱とミー散乱の違いは、主に散乱光の角度依存性と波長依存性に現れます。  レーリー散乱では入射光の方向に散乱する光(前方散乱光)と入射光の方向と反対方向に散乱する光(後方散乱光)が同じ強度になります。一方、ミー散乱では前方散乱光が後方散乱光に比べずっと強くなるという違いがあります。特に粒径パラメータが2.5以上になるとほとんど後方散乱光はありません。  波長依存性については、レーリー散乱の場合は、波長の4乗に反比例しますが、ミー散乱の場合はもっと複雑な波長依存性があります。  粒径パラメータが0.4という値は、これらの散乱のほぼ切り替わる点にあたり、これ以下では、前方散乱と後方散乱がほぼ等しくなりますが(レーリー散乱)、これ以上になると、粒径パラメータが増加するにつれ前方散乱の割合が大きくなっていきます(ミー散乱)。  古典的な描像としては、レーリー散乱では、散乱体が電磁波が照射されることにより電気的な分極を起こし(電荷の偏りが起こり、双極子モーメントが誘起される)、この分極により電磁波が発生する現象です。一方、ミー散乱は、微小球による電磁波の回折、屈折現象です。  ただ、レーリー散乱は粒径パラメータが1よりもずっと小さい分子レベルの粒子による散乱で、今回問題にしている0.4付近の散乱についてもミー散乱であると記述した本もあります。ご参考まで。

harenotigu
質問者

お礼

レイリー散乱とミー散乱が0.4ではっきり分かれるわけではなく徐々に切り替わっていくと思えばいいのですね. ありがとうございます.納得です.

関連するQ&A

  • やっぱりレイリー散乱

    レーザ光の波長と散乱粒子の大きさに関わる粒径パラメータ α=πD/λ λはレーザ光の波長、Dは粒子の直径 レイリー散乱はα<0.4の範囲とされているようですが,なぜに0.4なのでしょうか?α=0.4は何散乱になるのでしょうか?

  • ミー散乱、レイリー散乱について

     「ミー散乱により雲は白く見える」などと「ミー散乱、レイリー散乱」という言葉が出てきました。そこでは、ミー散乱、レイリー散乱はぶつかる物質の大きさによるとありました。そこで、  【疑問1】なぜ、物質の大きさによって、ミー散乱のように全波長が反射されて白く見えたり、レイリー散乱のように短い波長から散乱されていろいろな色に見えるのか?  【疑問2】雲は非常に小さな水滴からできていますよね。つまり、雲が白く見えるということは光がその非常に小さな水滴にミー散乱しているということですよね。水溜りや海などが白く見えないということはミー散乱していないということですよね。では、なぜ、同じ水滴からできている水溜りや海などではミー散乱していないのでしょうか?  【疑問3】光が非常に小さな水滴に当たる時に、なぜ光の一部が吸収されないで、全反射するのでしょうか?光が水に当たる時、一部は吸収されたりしますよね。  以上、大変申し訳ございませんが、高校レベルで教えていただければと思います。どうぞ宜しくお願い致します。

  • レイリー散乱とトムソン散乱などの違い

    レイリー散乱とトムソン散乱などの違い こんにちは! 機器分析を勉強しているのですが、 レイリー散乱とトムソン散乱などの違いが分かりません。 簡単な認識としては 入射光と励起光の波長が等しいものがトムソン散乱で 入射光と励起光の波長が違うものが(アンチ)ラマンストークス散乱 入射光と反射光(回折光)の波長が等しいものがレイリー散乱、 入射光と反射光の波長が違うものがコンプトン散乱という認識でいいでしょうか? それと、コンプトン散乱は運動量が一定という解説がされていましたが、 入射光と反射光との波長が違っているという、これはどういうことでしょうか? 簡単でいいので説明してください。

  • レイリー散乱

    レイリー散乱の効率は、波長の4乗の逆数に比例するといわれていますが、その導出過程を分かりやすく式を使って説明してほしいです。

  • レイリー散乱・散乱した太陽光が目に届く過程

     空が青い理由がレイリー散乱だということを知りました。太陽光が大気中で散乱され、波長の短いものほど散乱されやすいので青色となって空は見えるというものでした。  「人間の目に見える」ということは、見えているものから光が出ている、又は反射された光が目に入ってきてそこで初めて見えるそうです。散乱するということは、文字通り散らばるということですがそれならば人間の目に入らない光が出てきてしまい、むしろ波長の長い赤色の光がより目に入り赤い空として見えるのでは?と思ったのです。  また上の疑問と矛盾しますが、昼間の太陽を直接みると太陽は白いですよね。あれは青の光ががたくさん散乱された光を見ているということでしょうか?

  • ミー散乱?

    グリーンレーザ光を波長と同じくらいの粒子(0.5ミクロン)が点在する基板に照射した場合、ミー散乱しか起こりえないのでしょうか。 表面がざらついた粒子の場合、ミー散乱の散乱断面積ではなく、その粒子の実際の断面積(半径rの場合、πr^2)の部分がすべて散乱してしまうような気がしますがいかがでしょうか。

  • 光の散乱についてです。

    光の散乱について勉強・研究しています。 光の散乱は粒子による散乱があります。 媒質には一様に粒子が存在して、光はその粒子により散乱されるというものがあります。 たぶんこれが一般的だとは思います。 ですが、粒子という概念がない光の散乱があります。 Henyey-Greenstein関数という散乱関数があり、異方性因子(非等方散乱パラメータ)gを使って表されます。 このgを使うことで、散乱の状態を表現しているみたいです。ちなみに、gは散乱角の平均余弦です。 では、粒子という概念がないのに、なぜ光が散乱されるのでしょうか。 散乱体をどう表しているのでしょうか。 間違いなくgのパラメータが関係していると思いますが、よくわかりません。 粒子という概念がない場合の光の散乱(散乱体)について教えてください。 特に光の散乱に詳しい方、宜しくお願いします。 本当に困っています。助けてください。

  • レイリー散乱

    角振動数ω0の弾性力によって、原点に束縛された荷電粒子(質量m,電荷q)に、ω=c|k|とし定ベクトルE0で与えられる平面電磁波(ω≠ω0) E(t,x)=E0*e^[i(kx-ωt)] B(t,x)=k/ω*E(t,x) が入射している。この時、荷電粒子の運動を「磁場からの力が無視できる位、その速度が十分遅い」という近似のもとで、荷電粒子の運動を求めよ。 という問題なんですが、回答を教授からもらったのですが、レイリー散乱をそれまでならったことがないのにも関わらず、本当に答えしか書いてなくて途中の式などがほぼ全て省かれてしまっています。自分の勉強だけでは足らないとこだらけなので、よければ、途中式も含め最初から最後まで教えていただけないでしょうか?? こんな質問ですいませんが。。。

  • 光の散乱について

    光の波長よりも粒子のサイズが小さいほど光の散乱が起きやすくなるといった文章を見かけたのですが、これはどうしてなのか教えてほしいです。

  • 光の散乱と乱反射の違い

    過去の質問↓も見たのですが、よくわからなかったので教えてください。 http://oshiete1.goo.ne.jp/qa2119783.html 20年近く前に高校の化学の先生に「散乱と乱反射を混同してはいけない。散乱というのは光が電子と複雑な相互作用をして…」と習った記憶があります。 それ以来、私は「波長依存性があるもの…散乱、ないもの…乱反射」という基準を(たぶん先生が言ったのでなく勝手に)作って区別していました。 レイリー散乱は空が青いことに関係あるそうですから、波長依存性があるので、一応私の基準に合致するのですが、 「チンダル現象はコロイド粒子によって光が散乱する」という記述を多く見かけるので、私の基準は間違っているような気がしてきました。 どのようにして光の散乱と乱反射は判別すればよいのでしょうか?