• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:直列共振回路の問題)

直列共振回路の問題

このQ&Aのポイント
  • 抵抗、コイル、コンデンサを直列につないだ回路にキルヒホッフの第二法則を適用すると電流と電源の関係を計算できる。
  • 交流の周波数が共振周波数の時、ちょうどコイルとコンデンサで生じる電位の位相が逆になって互いに打ち消すので、結合抵抗が抵抗のインピーダンスと等しくなり、電流値は最大となる。
  • 直列共振回路は特定の周波数帯域の信号を取り出すために利用される。受動フィルタは入力電圧をエネルギー源とするので、電圧利得の最大値は0dBであり、電位が減少することはあっても増大することはない。

質問者が選んだベストアンサー

  • ベストアンサー
  • shintaro-2
  • ベストアンサー率36% (2266/6244)
回答No.2

電力はVIあるいはV^2・Rですので、 電圧利得が10dBなら 電力利得は2log(Vo/Vi)ですので2倍の20dBになります。 

noname#208194
質問者

お礼

分かりやすい回答ありがとうございます!とても参考になりました

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • tadys
  • ベストアンサー率40% (856/2135)
回答No.1

問題の回答は出題者の意図に合っていると思いますが、問題そのものに間違いがあります。 誤:受動フィルタは入力電圧をエネルギー源とするので、電圧利得の最大値は(0)[dB]であり、電位が減少することはあっても、増大 することはない。 正:受動フィルタは入力電圧をエネルギー源とするので、『電力』利得の最大値は(0)[dB]であり、『電力』が減少することはあっても、増大 することはない。 例1:Qメータでは、直列回路のコンデンサ(又はコイル)に発生する電圧は抵抗に印加される電圧のQ倍の値になります。 http://www.fcz-lab.com/CIRQ-004.pdf 例2:パイマッチ回路は一種のローパスフィルタですが、入出力で電圧が異なります。 http://www.geocities.co.jp/HeartLand/3713/pimatch.html

noname#208194
質問者

お礼

早い回答ありがとうございます! 問題の訂正もしてくださり、とてもありがとうございます!

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • RLC共振直列回路のXL,XCの求め方。

    RLC共振直列回路について質問です。 VRが最大でVL=VCの時の 共振周波数f,抵抗の両端の電圧VR,コイルの両端の電圧VL,コンデンサの両端の電圧VCが分かっています。 以上の4つより誘導リアクタンスXL,容量リアクタンスXCを求める方法の回答お願いします。 回路に流れる電流、各抵抗R,L,Cは分かりません・・これらが求め方が分からないのですが

  • 共振回路が分かりません

    LCを使った共振回路について教えて下さい。 これは、直列にしても並列にしても単純にLによる誘導性インピーダンスとCによる容量性インピーダンスが等しくなる周波数においてインピーダンスが低下する現象であることは分かるのですが、 なぜそれだけでこのような鋭い共振ピークが出るのでしょうか? 共振周波数からずれた周波数であっても単に電圧の位相より電流の位相が遅れるあるいは早いだけでそこまで利得に影響するとは思えないのですが、どうなのでしょうか?

  • 共振回路のある問題。

    【 RLC直列共振回路において、回路に共振周波数の正弦波交流電圧 v(t) = √2・V0sin(ωt) を印加したとき、回路に流れる電流とL,C,R各素子の両端の電圧の瞬時値を現す式を求めよ。ただしV0は周波数によらず6Vであり、L=0.5mH,C=20pF,R=10Ωとする。 】 という問題があるのですが、解答で 【 回路に流れる電流は、電源の周波数が共振周波数のときは I = V0/R = 6 】 とあり、これは分かるのですが、その次に 【 これを用いると、R,L,Cの両端の電圧は、各々 VR = RI VL = jωLI VC = I/jωC 】 とあるのですが、ここが分かりません。共振周波数のときはIが最大のときなんですよね?そのときはコンデンサーとコイルのインピーダンスが両方無くなるときだったような気がするのですが、そうすると、上のような計算はできないと思うのですが…? よろしくお願いします。

  • 直列共振回路の実験において

    一般的にコイルの内部抵抗の方がコンデンサの内部抵抗よりも大きくなる理由を教えてください。 RLC直列共振回路の実験を行い、その際コイルとコンデンサの電圧をそれぞれ測定しました。 その結果、VL>VCとなりました。 直列なので、流れる電流は同じ。ということは2つの内部抵抗が影響しているのではないかということになりました。 コイルには自己誘導、コンデンサには漏れ電流が関係しているのではないかと思い、調べていますが、なかなか上記の証明に行きつきません。 アドバイス、参考になるサイト等を教えていただきたいです。 よろしくお願いします。 (先ほど同様の質問を投稿しましたが、わけあって削除していただきました。すみません。)

  • RLC直列共振回路について

    先日、RLC直列共振回路の実験を行ったのですが疑問があるので質問をしました RLC直列共振回路の実験で、グラフに縦軸が実効値VR、VC、VL・横軸に周波数として、書いたのですがなぜこのようなグラフになるかがよくわかりません。 (周波数は、20Hzごとに、450Hzまで実験しました。) 実験結果は 抵抗Rの実効値は、100Hzまで上昇し、その後減少 コイルLの実効値は、450Hzまで、上昇 コンデンサCの実効値は、初め6Vあたりでその後、減少 となりました。 質問は、 (1)抵抗の実効値は、なぜ共振周波数まで数値が上昇して、その後減少するのか (2)コイルの実効値の、数値が上昇する理由 (3)コンデンサは、初め高い数値で周波数を上げると減少していくのか です 抵抗がなぜこのように変化するのかが特に気になります。 コイルとコンデンサは、なんとなくですが理解できますが、抵抗だけはどうしてもわからないです。 教えてください。 また、このような現象について詳しくかいてあるサイト・本などがあれば教えてください よろしくお願いします。

  • 電気学

    括弧内の正しい文語を選択してください。 電気回路の仕組みをエネルギーのやり取りとしてみると分かりやすい。静電場内にある単位電荷が持つ電気的な位置エネルギーを(1 電位 口磁気・質量)と 呼ぶ。その差により生じる電荷の流 れを電流と呼ぶ。受動素子に正弦波状の交流電圧を入力すると(2 応答特性・変動特性・過渡応 答)を 見ることができる。電流を流すと抵抗素子ではジュール熱や光としてエネルギー(電 力)が 消 費されて電圧が降下する。電圧値、電流値、抵抗値の関係はオームの法則に従う。一方、コイル やコンデンサは電流の(3位相値口電圧値・電流値)を ずらす性質を持つ。コイルは(4右ネジロレ ンツ・ファラデー)の 法則に従い、電流が流れると磁場が生じる。磁場を作ることでエネルギーが放 出されるが、電流の向きが変わると磁界の向きが逆転してエネルギーを得る方向に働く。その結 果、正味のエネルギー消費量はゼロとなる。コンデンサでも充電と放電を繰り返すことにより、や はり正味のエネルギー消費量はゼロとなる。従つて、仕事をするのは(5 抵抗ロコンデンサ・コイ ル)の 役目ということになり、その消費エネルギーを(6 無効・有効口皮相)電 力と呼ぶ。受動素子 はいずれも加えられる電圧に応じて電流量を変化させる働きを持つが、エネルギー消費の観点か らは随分と違うところがあつておもしろい。 電流を流れにくくする性質をインピーダンスと呼び、複素数で表す。受動素子を組み合わせた回 路はキルヒホッフの法則に従うので、位相の変化と合わせて、電圧の分圧や電流の分流の計算 を取り扱うことができる。入力電圧の周波数をω、コンデンサの (7 静電容量 口蓄電容量・熱容量) をC[F]と すると、コンデンサのインピーダンスは(3Gω C)・ (1ん ωC))と 表されるので、コンデンサを 流れる電流の位相はコンデンサに生じる電圧の位相と較べてπ/2(9 進む口遅れる・変わらない)。 そのため、フィルターの出力電圧は入力電圧の周波数によって変化する。例えば、コンデンサと 抵抗を直列につないで、コンデンサの両端に生じる電位差を出力電圧(Vo)と すると、(10 高域・中 域・低域)通過フィルタをつくることができる。交流電圧(Vi)を入力すると、電圧比(Vo/Vi)を(1 電 圧利得、電流利得、電力利得)と 呼び、デシベル[dB]で 表示する。利得と周波数との関係を表す図 を(12ゲーテ線図ロボーデ線図・ナイキスト線図)と 呼ぶ。抵抗での電圧降下とコンデンサでの電圧 降下がちょうど等しい場合の周波数を(13 高域・中域口低域)遮断周波数と呼び、卜1/(2π CR)と表 される。このとき入力電圧に対して出力電圧の電圧比は(14 3・ -3・ 1)[dB]で、位相がπ /4[rad](15 進む・遅れる・変わらない)。 抵抗、コイル、コンデンサを直列につないだ回路にキルヒホッフの(10 第一法則・第二法則)を 適 用すると電流と電源の関係を計算できる。交流の周波数が共振周波数の時、ちょうどコイルとコン デンサで生じる電位の位相が逆になつて互いに打ち消すので、結合抵抗が抵抗のインピーダンス と等しくなり、電流値は(1 最少口最大)と なる。この回路を直列共振回路とよび、ラジオやテレビで 特定の周波数帯域の信号を取り出すのに利用される。受動フィルタは入力電圧をエネルギー源とするので、電圧利得の最大値は(10O・ 1・ 10)[dB]であり、電位が減少することはあつても、増大 することはない。しかし、増幅回路は電源のエネルギーを利用するので、入力よりも大きな電圧を 出力することができる。この場合も電圧比(Vo/Vi)を電圧利得と呼び、最大値から(10 l・ 2・ 3・ 1 0)[dB]減 少した時の周波数を遮断周波数と呼んで増幅回路の周波数特性を表すのに利用して いる。増幅回路の電圧利得が10[db]、 電流利得が10[db]の場合には、電力利得は(1010・ 15・20) [db]で ある。

  • 共振現象について(電気回路)

     RLC直列回路を交流電源につなぎ、回路の電流とコンデンサの電圧を計測して求めた共振周波数の実測データが、理論式により求めた値と誤差が生じる原因としましては何がありますでしょうか?  理論式とはfo=1/2π√LC です。  コイルの線間容量やコンデンサの渦電流損などが思いつきましたが、他にもありましたら詳しくご説明していただけると嬉しいです。    あと、相互誘導回路についてですが、同じように共振周波数を計測したところ、共振周波数が二つ生じる(山が二つできる)のがわかったのですが、いまいちなぜ山が二つできるのか理解できません。  RLC回路が二個存在するから単純に共振の山も二個存在するのでしょうか。。。   すみませんがよろしくお願いしますm(_ _)m

  • RC直列回路,RL直列回路

     交流電圧源(電圧E〔V〕,周波数f〔Hz〕)に抵抗器(R〔Ω〕)とコンデンサ(C〔F〕)を直列に接続したRC直列回路において,抵抗器の両端の電圧|VR|と,コンデンサの両端の電圧|VC|を求める論理式はどのようになりますか。  同様に,交流電圧源(電圧E〔V〕,周波数f〔Hz〕)に抵抗器(R〔Ω〕)とコイル(L〔H〕)を直列に接続したRL直列回路において,抵抗器の両端の電圧|VR|と,コイルの両端の電圧|VL|を求める論理式はどのようになりますか。

  • LC直列共振回路の電圧の求め方

     こんにちは。いつもお世話になっております。 タイトルのとおりなのですが、R=0.1Ω(内部抵抗)、L=0.1μHのコイルを使って直列共振回路を製作します。これに、f=1000kHzの電波が0.1mVの振幅で受信できるアンテナにつながっているとき、共振時の電流、インダクタンス、キャパシタンス、抵抗のそれぞれの電圧はどれほどになるのか計算法がわかりません。どなたかヒントだけでも教えていただけないでしょうか?  よろしくお願いいたします。

  • 共振回路周波数特性のグラフについて

    共振回路について勉強しているものです。 多くの本に目をふれているのですが、どうしても理解できない点があるので質問いたします。 直列、並列共に共振回路の周波数特性のグラフが本によって様々です。 縦軸に回路に流れる電流、横軸に周波数をとっているのにもかかわらず、 直列の場合、共振周波数foまでが山なりに、 過ぎてからは共振点以前と比べるとややなだらかに(たまに直線)で描かれていることがあります。 また並列の場合は、共振点までが谷を作るような下り、 過ぎてからはやや直線的に描かれています。 共振回路の場合は、 共振点の前後で対照のグラフとなるのではないのでしょうか。 理想と現実との違いかと、コイルの内部抵抗を考慮してみたり、 コイル、コンデンサの値(L、C)で流れる電流が共振点の前後で影響しているのではないかと、 考えてはみたものの一向に答えが出てきません。 是非、ご教授お願いいたします。

このQ&Aのポイント
  • クリーニングできません 50と表記されたので指示に従い動作確認を行ったが変わらなかった。電源プラグを抜いて数分後に確認を行ったが変化はなかった。故障でしょうか?
  • パソコン(Windows 10 home)とプリンター(DCP-J983N)を無線LANで接続していますが、プリントができません。エラーコード50が表示され、クリーニングができない状態です。試したこととしては、電源プラグを抜いて再度確認したが、問題は解決しないようです。
  • 使用しているプリンター(DCP-J983N)で印刷ができなくなりました。エラーコード「クリーニングできません 50」と表示され、何度試しても印刷ができません。電源の再起動も試しましたが、変化はありません。この状態が続く場合は、故障している可能性があります。
回答を見る