• 締切済み

電磁気数学の問題

電磁気の数学の問題? が良く分からなくて困ってます。 実は明日大学の期末テストがあって糞あせってますwのでなにとぞ回答と解説お願いします。 次の積分を実行せよ。 線積分∫(z+i)dz , C : z=it^2 (0≦t≦1 ) (本当は∫の右下に小文字のcがあります) 線積分∫(e^z/z^2+1)dz , C : |z+i|=1 (本当は∫の右下に小文字のcがあります)

みんなの回答

  • info222_
  • ベストアンサー率61% (1053/1707)
回答No.1

線積分∫_c(z+i)dz , C : z=it^2 (0≦t≦1 ) =∫[0→1] (it^2+i) i2t dt =2(i^2)∫[0→1] (t^2+1)t dt =-2∫[0→1] (t^3+t) dt =-2[t^4/4 +t^2/2]∫[0→1] =-2(1/4 +1/2) =-3/2 ...(答) 線積分∫_c(e^z/(z^2+1))dz=Iとおく。 C : |z+i|=1 この積分路はz=-iを中心とする半径1の円周であるから この円周内の被積分関数の特異点はz=-iのみ。 z=-iにおける被積分関数の留数Res(z=-i)を求めると Res(z=-i)=lim(z→-i) (e^z)(z+i)/(z^2+1) =lim(z→-i) (e^z)/(z-i) =-e^(-i)/(2i)=(i/2)(cos(1)-isin(1)) 留数定理より I=2πi Res(z=-i)=-πcos(1)+πi sin(1) ...(答)

関連するQ&A

  • 複素積分の問題です。

    複素積分の問題です。 複素平面上の3つの曲線 C: z(θ)= 1+1/2re^iθ (0?θ?2π) D: z(θ)= 1+1/2re^iθ (0?θ?4π) C1: z(θ)= 1+1/2re^iθ (0?θ?π) C2: z(θ)= 1+1/2re^(-iθ) (0?θ?π) を考える。このとき、複素積分 ∫_c?1/(z-1)dz,4 ∫_D?1/(z-1)dz, ∫_c1?1/(z-1)dz, ∫_c2?1/(z-1)dz, ∫_c?1/zdz の値をそれぞれ求めよ。またその結果により、どのような定理が立つことが予想されるか。 全然わからないので是非よろしくお願いします。

  • 複素積分の問題です。

    教科書の問題からの抜粋ですが、答えが省略されていて分かりません。私のやり方と答えで良いのでしょうか?教えて下さい。 問、(2z+1)/(z^2-1)を次のかく点を中心とし、半径1の正方向の円に沿って積分せよ。 (1), z=1/3 (2), z=i 答え、  (1), z=1/3を中心として半径1の正方向の円にそっての積分範囲は、C={ z|-2/3≦z≦4/3 } であり、 与式=∫c(2z+1)/(z^2-1)dz=∫c(2z+1)/(z+1)*1/(z-1)dz と書ける。 ここで(2z+1)/(z+1)は曲線Cの内部で正則なので、コーシーの積分公式より z=1 と置いて、 ∫c(2z+1)/(z+1)*1/(z-1)dz=2πi*(2*1+1)/1+1=3πi (2), z=iを中心として半径1の正方向の円に沿っての積分範囲は、C={ z|0≦z≦2i } であり、 与式=∫c(2z+1)/(z^2-1)dz=∫c(1/z)*(2z^2+z)/(z^2-1)dz と書ける。 ここで(2z^2+z)/(z^2-1)は曲線Cの内部で正則なので、コーシーの積分公式より z=0 と置いて、 ∫c(1/z)*(2z^2+z)/(z^2-1)dz=2πi*0=0   特に(2)は自信がありません。以上お願いします。

  • 複素積分、積分路に関する問題が解けなくて困っています。

    複素積分、積分路に関する問題が解けなくて困っています。 来年大学院受験です。 問題は http://www.i.u-tokyo.ac.jp/edu/entra/pdf/archive/10math-j.pdf の第2問です。 (1)不定積分はすぐに解けるのですが、 (2)の積分経路はどうしていいかわかりません。 自分の途中までの回答としては、 (1)はtan^(-1)x + C, (1/2)*log(x^2+1) + C (2)はS1,S2,S3,S4の経路をそれぞれ z(t)=1+it (-1≦t≦1) z(t)=-t+i (-1≦t≦1) z(t)=-1-it (-1≦t≦1) z(t)=t-i (-1≦t≦1) とし、それぞれtで微分すると、 dz=idt dz=-dt dz=-idt dz=dt となり、それぞれ、 I_1 = ∫(-1~1) 1/(1+it-(a+ib)) * idt I_2 = ∫(-1~1) 1/(-t+i-(a+ib)) * -dt I_3 = ∫(-1~1) 1/(1+it-1-it-(a+ib)) * -idt I_4 = ∫(-1~1) 1/(t-i-(a+ib)) * dt という風に表せると思いますが、 ここでI_1は定積分すると log|(i+1-a-ib)/(-i+1-a-ib)|となりましたが、このままでいいのでしょうか? 何かもう少し変化させたりとかできないのでしょうか? 少々行き詰ってしまったので、指標をいただければ嬉しいです。 よろしくお願いいたします。

  • 線積分の問題だと思うんですけど…

    z = x + iy のとき∫Γ(x - y + ix^2)dzを求めよ。Γはz = 0から z = 1 + i までを結ぶ線分という問題ですが線積分のやり方がわかりません。どなたか線積分のやり方と問題の御回答よろしくお願いします。

  • 複素積分の問題が解けないです

    (1)C:|z|=3∫[c]z/(z^2+3iz-2)dz A:2πi (2)C:|z-i|=3 ∫[3]z^2/(z^2+z-2)dz A:2πi 解説をお願いします

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。

  • 積分の問題です。

    積分の問題です。 I=∫[C]((e^(2z))/(z+1)^4)dz ただし、Cは円|z|=3である。 わかる方がいましたら参考にさせて頂きたいです。 よろしくお願いいたします。

  • 複素関数の問題の解答解説を教えてください。

    複素関数の問題の解答解説を教えてください。 f(z)は正則でf(1) = 2(1 + i), f(-it) = f(it)および∫[0→2]f(it)/((t^2)+1) dt = πi を満たすとする。 c ∶ z = 2e^(iθ) (-π/2≤ θ ≤π/2) とするとき∫c f(z)/((z^2)-1) dz を計算しろ お願いします。

  • 複素積分の問題

    複素積分の問題  複素関数の勉強をしている者なのですが、  ∫(3z-4z^3)/(2z-1)^4 dz (積分範囲は|z|=1 ) の解き方が分かりません。解答によると答えは -πi/2 です。 分かる方できるだけ詳しく解説をお願いします。 

  • 複素積分の問題を教えてください。

    下の複素積分Iを求めよ。 I=∮c|z|dz ただし、積分路Cは図のように単位円|z|=1の上半部、反時計周りとする。 よろしくお願いします。途中計算も教えてください。苦手なので丁寧にやっていただけると助かります。