高校数学の確率の問題:文字の連の個数の期待値を求める方法

このQ&Aのポイント
  • 高校数学の確率の問題で、文字AとBの順列について考え、連の個数の期待値を求める方法について解説します。
  • 連の個数の期待値を求めるために、文字AとBを5個ずつ計10個を1列に並べるときの連の個数の分布を考えます。
  • 文字AとBを5個ずつ計10個を1列に並べるときの連の個数の分布から、連の個数の期待値を求める方法について解説します。
回答を見る
  • ベストアンサー

6-17 再質問の高校数学の確率の問題です

2種の文字A,Bの順列について考える 同一文字の1つづきを1つの連という 例えばAABABB ではAA,B,A,BBの4個の連を持つ A,Bを5個ずつ計10個を1列に並べるときの連の個数の期待値を求めよ 解説 A,B5個ずつ計10個の順列は[10]C[5]とおり考えられるが、そのうち連がk個であるものがa[k]通りあるとすると,たとえばa[5]については5連のうち3連がAで2連がBのものと,3連がBで2連がAのものとが考えられるが 5個を3分割する方法は○↓○↓○↓○↓○の4本の↓から2本を選ぶ方法に対応し(たとえば左から2,4番目の↓を選んだとすると○○↓○○↓○というように5個の○を3分割すると考える) その個数は[4]C[2]で一般のk分割だと[4]C[k-1]通りであるから a[5]=[4]C[2]・[4]C[1]+[4]C[1]・[4]C[2]=2[4]C[2]・[4]C[1] このようにしてa[2]~a[10]を求めると  a[2]=2[4]C[0]・[4]C[0]=2,a[3]=2[4]C[1]・[4]C[0]=8, a[4]=2[4]C[1]・[4]C[1]=32,a[5]=2[4]C[2]・[4]C[1]=48, a[6]=2[4]C[2]・[4]C[2]=72,a[7]=2[4]C[3]・[4]C[2]=48, a[8]=2[4]C[3]・[4]C[3]=32,a[9]=2[4]C[4]・[4]C[3]=8, a[10]=2[4]C[4]・[4]C[4]=2 したがって求める期待値は 1/[10]C[5]・(2・2+8・3+32・4+48・5+72・6+48・7+32・8+8・9+2・10)=1512/251=6 別解 a[2]=a[10],a[3]=a[9],a[4]=a[8],a[5]=a[7]が成り立つから、求める期待値は 1/[10]C[5]・{(2a[2]+10a[10])+(3a[3]+9a[9])+(4a[4]+8a[8])+ (5a[5]+7a[7])+6a[6]}=1/[10]C[5]・{(6a[2]+6a[10])+(6a[3]+6a[9])+ (6a[4]+6a[8])+(6a[5]+6a[7])+6a[6]}=1/[10]C[5]・Σ[k=2→10]6a[k]=6 (Σ[k=2→10]a[k]は順列の総数[10]C[5]に等しい) 研究 一般にn個ずつだと、連の個数の期待値は別解の解法によりn+1個になることがわかります (nが十分に大きいと1つの連の文字数の期待値は2となるわけである)    研究のnが十分に大きいと1つの連の文字数の期待値は2となるとあるのですが、何故そう分かるのですか?

質問者が選んだベストアンサー

  • ベストアンサー
  • tetra_o
  • ベストアンサー率93% (15/16)
回答No.1

充分な回答ではないかもしれませんが、参考にはなると思いますのでお答えします。 研究にある「一般にn個ずつだと、連の個数の期待値は別解の解法によりn+1個になる」ことを前提としますと、1つの連の文字数の期待値は、単純に文字の総数2nを連の個数の期待値で割ればよいので、2n/(n+1)となります。 ここで、高校三年生の数学IIIで習う「数列の極限」を知っていれば、nが充分に大きい時、この値がどうなるかを考えることができます。つまり、lim[n→∞] 2n/(n+1) = lim[n→∞] 2/(1+1/n) = 2 となります。従って、「nが十分に大きいと1つの連の文字数の期待値は2となる」ことが示されます。もし「数列の極限」を習っておられなければ、今は「そういうものなんだ」程度にとらえていただいて、勉強されてからまた見ていただければと思います。 勉強頑張ってください。

arutemawepon
質問者

お礼

御返答有難うございます

arutemawepon
質問者

補足

すいません、図貼るの忘れました、図を張って再掲載するので又答えていただけますか?

関連するQ&A

  • 6-17 再質問の高校数学の確率の問題です

    6-17 再質問の高校数学の確率の問題です 2種の文字A,Bの順列について考える 同一文字の1つづきを1つの連という 例えばAABABB ではAA,B,A,BBの4個の連を持つ A,Bを5個ずつ計10個を1列に並べるときの連の個数の期待値を求めよ 解説 A,B5個ずつ計10個の順列は[10]C[5]とおり考えられるが、そのうち連がk個であるものがa[k]通りあるとすると,たとえばa[5]については5連のうち3連がAで2連がBのものと,3連がBで2連がAのものとが考えられるが 5個を3分割する方法は○↓○↓○↓○↓○の4本の↓から2本を選ぶ方法に対応し(たとえば左から2,4番目の↓を選んだとすると○○↓○○↓○というように5個の○を3分割すると考える) その個数は[4]C[2]で一般のk分割だと[4]C[k-1]通りであるから a[5]=[4]C[2]・[4]C[1]+[4]C[1]・[4]C[2]=2[4]C[2]・[4]C[1] このようにしてa[2]~a[10]を求めると  a[2]=2[4]C[0]・[4]C[0]=2,a[3]=2[4]C[1]・[4]C[0]=8, a[4]=2[4]C[1]・[4]C[1]=32,a[5]=2[4]C[2]・[4]C[1]=48, a[6]=2[4]C[2]・[4]C[2]=72,a[7]=2[4]C[3]・[4]C[2]=48, a[8]=2[4]C[3]・[4]C[3]=32,a[9]=2[4]C[4]・[4]C[3]=8, a[10]=2[4]C[4]・[4]C[4]=2 したがって求める期待値は 1/[10]C[5]・(2・2+8・3+32・4+48・5+72・6+48・7+32・8+8・9+2・10)=1512/251=6 別解 a[2]=a[10],a[3]=a[9],a[4]=a[8],a[5]=a[7]が成り立つから、求める期待値は 1/[10]C[5]・{(2a[2]+10a[10])+(3a[3]+9a[9])+(4a[4]+8a[8])+ (5a[5]+7a[7])+6a[6]}=1/[10]C[5]・{(6a[2]+6a[10])+(6a[3]+6a[9])+ (6a[4]+6a[8])+(6a[5]+6a[7])+6a[6]}=1/[10]C[5]・Σ[k=2→10]6a[k]=6 (Σ[k=2→10]a[k]は順列の総数[10]C[5]に等しい) 研究 一般にn個ずつだと、連の個数の期待値は別解の解法によりn+1個になることがわかります (nが十分に大きいと1つの連の文字数の期待値は2となるわけである)    研究のnが十分に大きいと1つの連の文字数の期待値は2となるとあるのですが、何故そう分かるのですか?1つの連の文字数の期待値は、単純に文字の総数2nを連の個数の期待値で割ればよいので、2n/(n+1)となります。と教わりましたが良く分かりません、何でそんな事が成り立つのか教えてください

  • 6-17 助けてください 高校数学の確率の問題です

    2種の文字A,Bの順列について考える 同一文字の1つづきを1つの連という 例えばAABABB ではAA,B,A,BBの4個の連を持つ A,Bを5個ずつ計10個を1列に並べるときの連の個数の期待値を求めよ 解説 A,B5個ずつ計10個の順列は[10]C[5]とおり考えられるが、そのうち連がk個であるものがa[k]通りあるとすると,たとえばa[5]については5連のうち3連がAで2連がBのものと,3連がBで2連がAのものとが考えられるが 5個を3分割する方法は○↓○↓○↓○↓○の4本の↓から2本を選ぶ方法に対応し(たとえば左から2,4番目の↓を選んだとすると○○↓○○↓○というように5個の○を3分割すると考える) その個数は[4]C[2]で一般のk分割だと[4]C[k-1]通りであるから a[5]=[4]C[2]・[4]C[1]+[4]C[1]・[4]C[2]=2[4]C[2]・[4]C[1] このようにしてa[2]~a[10]を求めると  a[2]=2[4]C[0]・[4]C[0]=2,a[3]=2[4]C[1]・[4]C[0]=8, a[4]=2[4]C[1]・[4]C[1]=32,a[5]=2[4]C[2]・[4]C[1]=48, a[6]=2[4]C[2]・[4]C[2]=72,a[7]=2[4]C[3]・[4]C[2]=48, a[8]=2[4]C[3]・[4]C[3]=32,a[9]=2[4]C[4]・[4]C[3]=8, a[10]=2[4]C[4]・[4]C[4]=2 したがって求める期待値は 1/[10]C[5]・(2・2+8・3+32・4+48・5+72・6+48・7+32・8+8・9+2・10)=1512/251=6 別解 a[2]=a[10],a[3]=a[9],a[4]=a[8],a[5]=a[7]が成り立つから、求める期待値は 1/[10]C[5]・{(2a[2]+10a[10])+(3a[3]+9a[9])+(4a[4]+8a[8])+ (5a[5]+7a[7])+6a[6]}=1/[10]C[5]・{(6a[2]+6a[10])+(6a[3]+6a[9])+ (6a[4]+6a[8])+(6a[5]+6a[7])+6a[6]}=1/[10]C[5]・Σ[k=2→10]6a[k]=6 (Σ[k=2→10]a[k]は順列の総数[10]C[5]に等しい) 研究 一般にn個ずつだと、連の個数の期待値は別解の解法によりn+1個になることがわかります (nが十分に大きいと1つの連の文字数の期待値は2となるわけである)    以下疑問点 解説のA,B5個ずつ計10個の順列は[10]C[5]の所なのですが、順列だから10!じゃないんですか? 5個を3分割する方法は○↓○↓○↓○↓○の4本の↓から2本を選ぶ方法に対応しの部分なのですが a[5]というのは連が5個の場合の数なのですが、それを求めるために何故5個を3分割する方法を考えるのですか? a[5]を求める式a[5]=[4]C[2]・[4]C[1]+[4]C[1]・[4]C[2]=2[4]C[2]・[4]C[1]となっているのですが、a[5]を求める式が何故このような式で表すことができるのか分からないです a[2]~a[10]も同じように書いていますが分からないです 別解の求める期待値が1/[10]C[5]{(2a[2]+10a[10])+(3a[3]+9a[9])+(4a[4]+8a[8])+(5a[5]+7a[7])+6a[6]}と表せるのが何故なのか解説を読んでも分からないです その下のこの形をまとめて1/[10]C[5]・Σ[k=2→10]6a[k]=6としているのもどうやったのか分かりません 横の()の中のΣ[k=2→10]a[k]は順列の総数[10]C[5]に等しいというのも何故そう言えるのか分かりません 研究のnが十分に大きいと1つの連の文字数の期待値は2となるとあるのですが、何故そう分かるのですか?

  • 確率です 連の問題!!(617)

    2種の文字A,Bの順列について考える 同一文字の1つづきを1つの連という 例えばAABABB ではAA,B,A,BBの4個の連を持つ A,Bを5個ずつ計10個を1列に並べるときの連の個数の期待値を求めよ 解説 A,B5個ずつ計10個の順列は[10]C[5]とおり考えられるが、そのうち連がk個であるものがa[k]通りあるとすると,たとえばa[5]については5連のうち3連がAで2連がBのものと,3連がBで2連がAのものとが考えられるが 5個を3分割する方法は○↓○↓○↓○↓○の4本の↓から2本を選ぶ方法に対応し(たとえば左から2,4番目の↓を選んだとすると○○↓○○↓○というように5個の○を3分割すると考える) その個数は[4]C[2]で一般のk分割だと[4]C[k-1]通りであるから a[5]=[4]C[2]・[4]C[1]+[4]C[1]・[4]C[2]=2[4]C[2]・[4]C[1] このようにしてa[2]~a[10]を求めると  a[2]=2[4]C[0]・[4]C[0]=2,a[3]=2[4]C[1]・[4]C[0]=8, a[4]=2[4]C[1]・[4]C[1]=32,a[5]=2[4]C[2]・[4]C[1]=48, a[6]=2[4]C[2]・[4]C[2]=72,a[7]=2[4]C[3]・[4]C[2]=48, a[8]=2[4]C[3]・[4]C[3]=32,a[9]=2[4]C[4]・[4]C[3]=8, a[10]=2[4]C[4]・[4]C[4]=2 したがって求める期待値は 1/[10]C[5]・(2・2+8・3+32・4+48・5+72・6+48・7+32・8+8・9+2・10)=1512/251=6 別解 a[2]=a[10],a[3]=a[9],a[4]=a[8],a[5]=a[7]が成り立つから、求める期待値は 1/[10]C[5]・{(2a[2]+10a[10])+(3a[3]+9a[9])+(4a[4]+8a[8])+ (5a[5]+7a[7])+6a[6]}=1/[10]C[5]・{(6a[2]+6a[10])+(6a[3]+6a[9])+ (6a[4]+6a[8])+(6a[5]+6a[7])+6a[6]}=1/[10]C[5]・Σ[k=2→10]6a[k]=6 (Σ[k=2→10]a[k]は順列の総数[10]C[5]に等しい) 研究 一般にn個ずつだと、連の個数の期待値は別解の解法によりn+1個になることがわかります (nが十分に大きいと1つの連の文字数の期待値は2となるわけである)    研究のnが十分に大きいと1つの連の文字数の期待値は2となるとあるのですが、何故そう分かるのですか?1つの連の文字数の期待値は、単純に文字の総数2nを連の個数の期待値で割ればよいので、2n/(n+1)となります。と教わりましたが良く分かりません、何でそんな事が成り立つのか教えてください 自分なりに考えたのは 総文字数が2nあって2n=連の数×連に含まれる文字の数なんだけど明確に2nの文字の中に何個の連があって、一つの連の中に何個の文字があるかわからないから 研究のnが十分に大きいと1つの連の文字数の期待値は2となるとあるのですが、何故そう分かるのですか?1つの連の文字数の期待値は、単純に文字の総数2nを連の個数の期待値で割ればよいので、2n/(n+1)となります。と教わりましたが良く分かりません、何でそんな事が成り立つのか教えてください 自分なりに考えたのは 総文字数が2nあって2n=連の数×連に含まれる文字の数なんだけど明確に2nの文字の中に何個の連があって、一つの連の中に何個の文字があるかわからないから 平均をとって2nの文字数は2nの文字の中に平均して含まれる連の個数とその平均して含まれる連の個数の中に含まれている平均の文字数を掛けたもので得られる ので総文字数=総文字数に含まれる平均の連の数×総文字数に含まれる平均の連の数に含まれる平均の文字数 つまり2n=n+1×総文字数に含まれる平均の連の数に含まれる平均の文字数 よって総文字数に含まれる平均の連の数に含まれる平均の文字数=2n/n+1 よってlim[n→∞]2n/n+1=2となる こういう事ですか?でもこれだと総文字数に含まれる平均の連の数に含まれる平均の文字数=1つの連の文字数の期待値となるのですが、総文字数に含まれる平均の連の数って一つかどうか分からないので同じになるとは言えないですよね?

  • 五の参 高校数学の場合の数

    n>=3とする1,2,..nのうちから重複を許して6個の数字をえらびそれらを並べた順列を考える、このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよ 解説 題意の順列に数字aが現れるとするとaは2回以上現れる よってa,b,cはどの2つも異なるものとして6数の組み合わせについて (1)(a,a,a,a,a,a)(2)(a,a,a,a,b,b) (3)(a,a,a,b,b,b) (4)(a,a,b,b,c,c)の4タイプがある、まずa,bの決め方については (1)n通り (2)[n]P[2]通り (3)[n]C[2]通り (4)[n]C[3]通り (3)ではたとえばa=1,b=2とa=2,b=1を同一視した 、(4)も同様 でa,b,cを決めると6個の順列については(1)1通り (2)[6]C[2]通り (3)[6]C[3]通り (4)[6]C[2]×[4]C[2]通り 以上により求める個数はn×1+n(n-1)×15+n(n-1)/2×20+n(n-1)(n-2)/6×15.×6=n+25n(n-1)+15n(n-1)(n-2)=15n^2-20n+6n 注(3)は第一段階で[n]P[2]と数えると第二段階では[6]C[3]÷2としなければなりません((4)も同様) とあったのですが(4,4,4,4,5,5)と(5,5,5,5,4,4)は違う並びで(4,4,4,5,5,5)と(5,5,5,4,4,4)は同じ選び方と考えるのは何故ですか?どちらも回転させたら同じ並びになります

  • 五の参 高校数学の場合の数

    n>=3とする1,2,..nのうちから重複を許して6個の数字をえらびそれらを並べた順列を考える、このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよ 解説 題意の順列に数字aが現れるとするとaは2回以上現れる よってa,b,cはどの2つも異なるものとして6数の組み合わせについて (1)(a,a,a,a,a,a)(2)(a,a,a,a,b,b) (3)(a,a,a,b,b,b) (4)(a,a,b,b,c,c)の4タイプがある、まずa,bの決め方については (1)n通り (2)[n]P[2]通り (3)[n]C[2]通り (4)[n]C[3]通り (3)ではたとえばa=1,b=2とa=2,b=1を同一視した 、(4)も同様 でa,b,cを決めると6個の順列については(1)1通り (2)[6]C[2]通り (3)[6]C[3]通り (4)[6]C[2]×[4]C[2]通り 以上により求める個数はn×1+n(n-1)×15+n(n-1)/2×20+n(n-1)(n-2)/6×15.×6=n+25n(n-1)+15n(n-1)(n-2)=15n^2-20n+6n 注(3)は第一段階で[n]P[2]と数えると第二段階では[6]C[3]÷2としなければなりません((4)も同様) とあったのですが、まずa,bの選び方は(1)のn通り、(2)の[n]P[2]通りは分かります、(3)と(4)は何で[n]P[2]じゃ駄目なんですか?並べ方は分かります まず

  • 高校数学確率の問題です。

    A が赤玉 1 個、B が白玉 1 個、C が青玉 1 個持っている。コイン投げでコインの表が出れば A と B の持ち玉を交換し、裏が出れば B と C の持ち玉を交換する。 N回コインを投げて繰り返したとき A、B、C が赤玉をもっている確率 A[n]、B[n]、C[n] を求める。 どう考えればいいのかさっぱりわかりません。 n = 1のとき (1)表が出た場合、その確率は 1/2 であり、B が赤玉を持つことになるから   B[1] = 1/2,  A[1] = C[1] = 0. (2)裏が出た場合、その確率は 1/2 であり、A が赤玉を持つことになるから   A[1] = 1/2,  B[1] = C[1] = 0. したがって   A[1] = 0 + 1/2 = 1/2   B[1] = 1/2 + 0 = 1/2   C[1] = 0 + 0 = 0  ここからどう進めていけばいいのかわかりません。

  • 高校数学確率の問題です。

     A が赤玉 1 個、B が白玉 1 個、C が青玉 1 個持っている。コイン投げでコインの表が出れば A と B の持ち玉を交換し、裏が出れば B と C の持ち玉を交換する。  N回コインを投げて繰り返したとき A、B、C が赤玉を持っている確率 A[n]、B[n]、C[n] を求める。 n = 1のとき ・表が出た場合、その確率は 1/2 であり、B が赤玉を持つことになるから   B[1] = 1/2 ・裏が出た場合、その確率は 1/2 であり、A が赤玉を持つことになるから   A[1] = 1/2 したがって   A[1] = 1/2,  B[1] = 1/2,  C[1] = 0.  表が出れば、赤を持っているのが A なら B に、B なら A に、C なら C に移動する。  裏が出れば、赤を持っているのが A なら A に、B なら C に、C なら B に移動する。  よって、   A[n+1] = A[n]/2 + B[n]/2 ・・・・・(#1)   B[n+1] = A[n]/2 + C[n]/2 ・・・・・(#2)   C[n+1] = B[n]/2 + C[n]/2 ・・・・・(#3)  この漸化式の解き方がよくわかりません。 (#1)-(#3)から   A[n+1] - C[n+1] = (A[n]-C[n])/2 ですが、(#2)と(#3)、(#1)と(#2)ではうまい関係が導けません。

  • 高校数学の確率の問題です

    10本中2本の当たりが入っているくじがある。 この中から、AとBがこの順に1本ずつくじを引く。 ただし、Aは引いたくじを元に戻さないものとする。 このとき、次の確率を求めよ。 (1)Aが当たる確率 (2)Bが当たる確率 これは、某基礎問題集に掲載されている、確率の問題です。 (2)の模範解答は、順列の公式を駆使してあります。 さらに、別解として、 (Bが当たる確率)P=(9*2)*8!/10!=1/5 となっております。 何故、このような解答になるのか分かりません。 そもそも、くじ引きの問題で、順列の考え方を用いる解答がありますが、 なぜ順列を用いるのでしょうか? 数学マスター諸兄の知恵を貸していただければ、幸いです。

  • 五の参 高校数学の場合の数

    n>=3のとき1からnのうちから重複を許して6個の数字を選び並べた順列のうちでどの数字もそれ以外の5つの数字のどれかに等しくなる個数を求めよ 回答 順列にaが現れるとするとaは2回以上現れる、よってa,b,cはどの2つも異なるとして 6数の組み合わせは (1)(a,a,a,a,a,a)(2)(a,a,a,a,b,b) (3)(a,a,a,b,b,b) (4)(a,a,b,b,c,c) の4タイプあり、a,b,cの決め方は(1) n通り (2) nP2通り (3) nC2通り (4) nC3通り 3では例えばa=1,b=2とa=2、b=1を同一視した4も同様 a,b,cを決めると6個の順列については(1) 1通り (2) 6C2通り (3) 6C3通り (4) 6C2×4C2通り (3)は第一段階でnP2と数えると第二段階で6C3÷2としなければなりません (4)も同様 とあったのですが6数の組み合わせは (1)(a,a,a,a,a,a)(2)(a,a,a,a,b,b) (3)(a,a,a,b,b,b) (4)(a,a,b,b,c,c) の4タイプあり、a,b,cの決め方は(1) n通り (2) nP2通り (3) nC2通り (4) nC3通りの所なのですが、何故(1)~(4)までの場合がn通りやnC2通りやnP2通りやnC3通りになっているのかわかりません (3)では例えばa=1,b=2とa=2、b=1を同一視した4も同様も何の事なのかよくわかりません (3)は第一段階でnP2と数えると第二段階で6C3÷2としなければなりません (4)も同様も何のことなのか良くわかりませんPって順列ですよね

  • 6-2 高校数学の確立の問題です

    各々1から10までの番号の付いた10個の白い球と同じく10個の赤い球の計20個が入った袋がある この袋から1つずつ順に4個の球を取り出すことにする ただし、一度取り出した球は袋に戻さないものとする このとき (1)4つめの球を取り出したときに初めて同じ番号の白球と赤球の対ができる確率をもとめよ (2)2つめに取り出した球の番号よりも4つめに取り出した球の番号のほうが大きくなる確率を求めよ 解説 (1)4個の球の順列は20/19/18/17通り(1)でこのうちで題意のようになるのは球の番号だけに着目するとabca,baca,bcaaの3タイプで各タイプの順列の個数を色も考慮して。まずは2個のaから数えると、どのタイプも20・1・18・16通り(2) よって求める確率は ((2)×3)/(1)=(16・3)/19・17=48/323  別解(1)くじ引き型の問題は一般に和積の法則を使わないで単に場合の数を数える解法がよいが本問は積の法則を使ったほうが考えやすい 求める確率は 20/20・18/19・16/18・3/17=48/323 (2)(1)の(1)のうちで題意のようになるのは、まず、2個目と4個目の番号の組み合わせ つぎに2個目と4個目の色 最後に1個目と3個目の球(番号および色)の順に考えると[10]C[2]・2^2・18・17=20/9・18・17通りである よって求める確率は9/19 (2)の別解 n個目の番号をa[n]とする (1)(1)の順列を、まずは2個目と4個目の番号の組み合わせを決めてから作ると考えると、明らかにP(a[2]<a[4])=P(a[2]>a[4])よって P(a[2]<a[4])=1/2×{1-P(a[2]=a[4])}=1/2×(1-1/19)=9/19 (注) (注)(2)の別解のP(a[2]=a[4])=1/19はまずa[2]、つぎにa[4]を決めると考えれば瞬間的に分かることですが、このように時間の順序を変えて考えてよいのは順列は好きな順序で数えてよいからです とあったのですが abca,baca,bcaaの3タイプあるとあるのですが、acbaは考えなくていいんですか? まずは2個のaから数えるとどのタイプも20・1・18・6通りとあるんですが、何故この掛け算になるのか分かりません最初の20は20個からどの番号を選ぶか20通りなので20と分かるんですが、次の1が分からないです、次の18は最初の球と2番目の球以外の18通りということでしょうか?次の6は何で6なのか分からないです 求める確立は((2)×3)/(1)の所で(2)×3の3は何で3を掛けるんですか? 別解?の積の法則を使って20/20×18/19×16/18×3/17=48/323の所の計算も何でこの計算になるのか分かりません (2)は2個目と4個目の番号の組み合わせ 次に2個目と4個目の色 最後に1個目と3個目の球 の順に考えると [10]C[2]×2^2×18×17=20×9×18×17通りってあるんですが ここも何でこんな計算になるのか分かりません (2)の別解で2個目と4個目の番号を組み合わせてから作ると考えるとP(a[2]<a[4])=P(a[2]>a[4])とあるんですがa[2]>a[4]とa[2]<a[4]が何で同じになってるのか分かりません よってP(a[2]<a[4])=1/2×{1-P(a[2]=a[4])}=1/2×(1-1/(19))の所なのですが P(a[2]<a[4])=1/2×{1-P(a[2]=a[4])}が成り立つのが分かりません、それとP(a[2]=a[4])が何故1/(19)になるのかも分からないです