• 締切済み

偏微分?

任意の係数a_n,b_nとおいて Sn(x)=a_0/2+Σ[n=1,N](a_n cosnx+b_n sinnx) 周期2πの区分的に連続な関数f(x)は J=∫[-π→π] [f(x)-Sn(x)]^2 dx と表されていて、 ∂J/∂a_n=0, ∂J/∂b_n=0 を用いて、 ∫[-π→π] [f(x)-Sn(x)]cosnx dx=0 (n=0,1,••••,N) ∫[-π→π] [f(x)-Sn(x)]sinnx dx=0 (n=0,1,••••,N) を証明せよ。 ヒントとして、{∂J/∂Sn(x)}•{∂Sn(x)/∂a_n}=0 が与えられました。 なんとなくやり方はわかるのですが、うまくいきません。 誰かよろしくお願いします。

みんなの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

文章の意味が分からない. 日本語で改めて書き直してほしい.

関連するQ&A

  • フーリエ級数について

    周期2πの関数f(x)がある。それをf(x)≒(a_0/2)+Σ[N,n=1]{a_n cos(nx)+b_n sin(nx)}=S_N(x)と近似し、誤差平方和J=∫[-π,π]{f(x)-S_N(x)}^2dxを最小にするよう係数{a_n,b_n}を選ぶとする。この時、係数{a_n,b_n}は a_n=(1/π)∫[-π,π]f(x)cos(nx)dx b_n=(1/π)∫[-π,π]f(x)sin(nx)dx と一致することを示せ。 どうしたらいいのか分かりません。 解説をお願いします。

  • f=max(sinx,0)のフーリエ級数展開について

    f=max(sinx,0)は     f(x)=  0 (-π≦x≦0)       sinx (0≦x≦π)  であり、 この関数のフーリエ級数展開をせよという問題ですが、n≧2として 係数ao=2/π,a1=0、an= {(-1)^(n+1) -1} / {π*(n^2 -1)} になり、b1=1/2,bn=0となったので、 f(x)=1/π + 1/2sinx +  Σ(n=2~∞)an*cosnx と答えを得ましたが、かなり自信がありません。どなたか知恵のある方、貸してくれるとありがたいです。 もちろんfは2π周期の周期関数で、区分的に滑らかである。

  • フーリエ係数

    周期2πの周期関数f(x)が、 f(x)=-1(-π≦x<0)f(x)=1(0≦x<π)の時、f(x)のフーリエ級数を a0/2+Σ(an cosnx + bn sinnx) とするとき、 anはすべて0、bnはnが偶数のとき0で奇数のとき4/nπ で合っていますでしょうか? ご教授いただけましたら幸いです。 よろしくお願い申し上げます。

  • Σ[n=1..∞]a_nφ_n(x)が関数f(x)に[a,b]で一様収束する時,各n∈Nに対してa_nはfのフーリエ係数となる

    こんにちは。 [問]{φ_n(x)}を[a,b]での直交関数列とせよ。級数Σ[n=1..∞]a_nφ_n(x)が関数f(x)に[a,b]で一様収束する時,各n∈Nに対してa_nはfのフーリエ係数となる事を示せ。 [証] 仮定より[a,b]でΣ[n=1..∞]a_nφ_n(x)=f(x) …(1)と言える。 c_k (k=0,1,2,…)をf(x)の{φ_n(x)}に於ける[a,b]でのフーリエ係数とすると フーリエ係数の定義から c_k=∫[a..b]f(x)φ_k(x)dx/∫[a..b](φ_k(x))^2dx=∫[a...b](Σ[n=1..∞]a_nφ_n)φ_k(x)dx/∫[a..b](φ_k(x))^2dx (∵(1)) =∫[a...b]a_kφ_kφ_k(x)dx/∫[a..b](φ_k(x))^2dx(∵{φ_n(x)}は直交) =a_k∫[a...b](φ_k(x))^2dx/∫[a..b](φ_k(x))^2dx =a_k となり,一様収束である事の条件を使わなかったのですがこれで正しいのでしょうか?

  • フーリエ展開 微分方程式の一般解

    y''+y=f(x)という微分方程式の一般解を求める。 ただし、f(x)=x^2 (-π<x≦π) f(x+2π)=f(x)であるとする。 上記のような問題なのですが、まずf(x)をフーリエ展開すると、f(x)=π^2/3+4Σ(-1)^n/n^2となりました。 この後、係数比較を行うために、yn=Acosnx+Bsinnxとおき、yn'+yn=4(-1)^n/n^2となり、AとBの値を求めることができました。 しかし、この問題の解答はy=c1cosx+c2sinx+(π^2/3)+2xsinx+4Σ[2→∞]{(-1)^n/(1-n^2)n^2}cosnxとなるようで、四つ目の項の2xsinxの出所がよくわかりません。 4Σ[2→∞]{(-1)^n/(1-n^2)n^2}cosnxの部分は、nが2以上のときの場合を表していて、π^2/3はn=0のときの場合を表している。つまり、2xsinxという部分はn=1のときの場合を求めているのではないかというところまで推測できたのですが、何故このような2xsinxという値が出てくるのかわかりません。 n=1のとき、1-n^2が0になってしまうため、別に求めなければいけないというのはなんとなくわかるのですが、上手く2xsinxの値まで辿り着きません。 長くなりましたが、この問題についてわかる方、ご教授お願いします。

  • 積分法の証明なのですが・・

    いまいち解法がわからないんです(・_・、) どなたか分かるかた、答えだけでなく解き方・考え方をおねがいします。 a <=(小なりイコール) b のとき|∫a-b f(x)dx| <= ∫a-b |f(x)|dx であることを示したく、またこれより lim∫0-2π {(cosnx)/(x^2+n^2)}dx=0 を示したいです。 最初のは左辺から右辺、という方法が使えますか?うまくできなかったんです。 それに、最初が示せたとしても次ではたまた詰まってしまって・・。 積分に自信がなくなってきたぁ。゜(゜´Д`゜)゜。 よろしくお願いします

  • なぜこうなるのか教えてください。

    なぜこう置くのか教えてください。 以下のような問題の解答が理解できないので、教えてください。 問題 区間[-X/2,X/2]を周期とする周期関数のフーリエ展開は次式で与えられることを示しなさい。 ↓次式の画像 http://www.fastpic.jp/images.php?file=8628989078.jpg 以前教えていただいた解答は以下の通りなのですが、理解できないところがあります。 解答↓ Xを周期とする周期関数をf(x) g(t)=f(Xt/(2π))とすると g(t+2π)=f(X(t+2π)/(2π))=f(Xt/(2π)+X)=f(Xt/(2π))=g(t) g(t)は2πを周期とする周期関数だから g(t)のフーリエ展開は g(t)~{(a_0)/2}+Σ_{n=1~∞}{(a_n)cos(nt)+(b_n)sin(nt)} a_n=(1/π)∫_{-π~π}g(t)cos(nt)dt b_n=(1/π)∫_{-π~π}g(t)sin(nt)dt だから x=Xt/(2π)とすると -π<t<π→-X/2<x<X/2 t=2πx/X dt=(2π/X)dx ∴ f(x)~{(a_0)/2}+Σ_{n=1~∞}{(a_n)cos(2nπx/X)+(b_n)sin(2nπx/X)} a_n=(2/X)∫_{-X/2~X/2}f(x)cos(2nπx/X)dx b_n=(2/X)∫_{-X/2~X/2}f(x)sin(2nπx/X)dx 理解できなかったところ (1)なぜg(t)=f(Xt/(2π))とするのか?その理由。 (2)f(Xt/(2π)+X)=f(Xt/(2π)) これはなぜか。 (3)g(t)は2πを周期とする周期関数と言えるのはなぜか? (4)x=Xt/(2π)とすると -π<t<π→-X/2<x<X/2 t=2πx/X dt=(2π/X)dx なぜx=Xt/(2π)とおいてこういった計算をするのか。 (5)g(t)~{(a_0)/2}+Σ_{n=1~∞}{(a_n)cos(nt)+(b_n)sin(nt)} が f(x)~{(a_0)/2}+Σ_{n=1~∞}{(a_n)cos(2nπx/X)+(b_n)sin(2nπx/X)} に変更されるのはなぜか。g(t)がf(x)に置き換えられているが、どうしてそうすることができるのか。 以上の5点を教えてください。

  • フーリエ級数の係数決定方法(近似精神)

    こんにちは。ちょっと専門的なのですがフーリエ級数についてです。 まだ手をつけたばかりですが、微積分関係の知識は高卒程度までは あります。 ある本に、フーリエ級数とは周期関数f(x)を(拡張すると周期関数でなくてもよい)三角関数で近似するということであり、式で表すと f(x)≒g(x)=A_0/2+Σ[n=1~N]{A_n*Cos(x)+B_n*Sin(x)} ただし(アンダーバー後の数字は添え字を表します) となる。A_nとB_nの決定には、 ∫[-π/2~π/2]{f(x)ーg(x)}^2 dx が極小になるように選ぶ。と書いてありました。 もちろん私はA_nとB_nがどう表わされるかは知っているのですが、 普通f(x)にCos(nx)やSin(nx)を掛けて周期で積分しますよね。 この「∫[-π/2~π/2]{f(x)ーg(x)}^2 dxが極小になるように選ぶ」 とは一体どういうことなのでしょうか。 極小になるように選ぶといってもどう選ぶのですか。微分するのでしょうか。 ちょっと難しいかもしれないのですが、分かる方、計算方法等を 示していただけませんか。ずっと考えていてもやもやしていて仕方 ないのです。お願い致します。

  • フーリエ級数収束定理とリーマン・ルベーグの定理

    フーリエ級数収束定理の証明を考えているのですが、ある疑問が出て、証明にたどり着けません。 問題の根本はリーマンルベーグの定理から来るものです。 フーリエ級数収束定理の証明を考えると、、最終的に、以下の式の証明を考えなければならないと分かりました。 lim[n→∞]{∫[-T/2→T/2]{(f(u+t)-f(t))/sin(ωu/2)*sin((n+1/2)ωu}du}=0 (ω=2π/T) …(1) この証明にリーマンルベーグの定理を用いるのですが、困った事がおきました。 フーリエ級数収束定理とは次のような定理です。 周期Tの周期関数f(t)が「区分的に滑らか」であるとき、f(t)のフーリエ級数代n部分和S[n](t)に関して、次の極限式が成り立つ。 lim[n→∞]{S[n](t)}=f(t) …(2) (ただし、不連続点では、[右辺]={f(t-0)+f(t+0)}/2) 「区分的に滑らか」と「区分的に連続」の定義は次のようになります。 (※)「区分的に滑らか」…有限個の微分不可点(傾きが急変する点や不連続点)t[k](k=1,2,3,…,n)が存在するもののそれ以外の点では連続かつ有界。また、 tkの近傍(t[k]±0)において、t[k]-0 における左側微分係数(f'-(t[k]-0))及び、t[k]+0 における右側微分係数(f'+(t[k]+0))が存在する。 (微分不可点を除いて、関数とその導関数が有界であれば区分的に滑らかであるといえる。) (※)「区分的に連続」…有限個の不連続点tkを除いて連続かつ有界。また、tkにおける左側極限値 f(t[k]-0) 及び、右側極限値 f(t[k]+0) が存在する。 lim[n→∞]{∫[-T/2→T/2]{(f(u+t)-f(t))/sin(ωu/2)*sin((n+1/2)ωu}du}=0 ((1)式) が成り立つことを示すには、リーマン・ルベーグの定理(補題)を使うと思います。このリーマン・ルベーグの定理とは、 関数f(x)が区間[a,b]で、「ある性質」を持つとき、次の極限式が成立する。 ・lim[n→∞]{∫[a→b]{f(x)sin(nx)}=0 …(3) ・lim[n→∞]{∫[a→b]{f(x)cos(nx)}=0 という定理です。最終的には、このリーマン・ルベーグの定理(補題)が証明でき、(1)式に応用することができれば良いのではないかという結論に至りました。 リーマン・ルベーグの定理の証明について、いくつかのサイトを参考にしたのですが、f(x)が持つ「ある性質」の部分が統一されておらず、 ・区分的に滑らか ・区分的に連続 の2通りの流儀があるようでした。 リーマン・ルベーグの定理の成立条件として「f(x)が区分的に滑らか」を採用した場合、 ∫[a→b]{f(x)sin(nx)}=[a→b](1/n)[-f(x)cos(nx)]+∫[a→b](1/n){f'(x)cos(nx)} から、f(x)及びf'(x)が[a,b]で有界ならば、n→∞としたとき零になり、リーマン・ルベーグの定理が成立することが分かります。 これを(1)式に対して適用します。(3)式のf(x)は、(1)式では、(f(u+t)-f(t))/sin(ωu/2)です。 (f(u+t)-f(t))/sin(ωu/2)=g(u) とおくと、g(u)およびg'(u)が有界であることを言うことが必要になります。 g(u)=(f(u+t)-f(t))/u*u/sin(ωu/2) , lim[u→0]g(u)=2/ω*f'(t) より、 [-T/2≦u≦T/2]において、f(t)及びf'(t)が発散しなければ、つまりf(t)が周期T内で「区分的に滑らか」ならば、g(u)は有界であることが言えそうなのです が、g'(u)が[-T/2≦u≦T/2]で有界になることが自分には証明できませんでした。もし証明できるならば教えてください。 一方で、リーマン・ルベーグの定理の成立条件として「f(x)が区分的に連続」を採用した場合ですが、この定理の証明に http://tmlaboratory.at-ninja.jp/doc/Riemann-Lebesgue_lemma/node3.html http://homepage3.nifty.com/rikei-index01/ouyoukaiseki/riemanrubeg.html を参考にしながら次のように検討しました。 区分的に連続の関数f(x)が閉区間[a,b]で有限個(M個)の不連続点(x=t[k](k=1,2,…,M))を持つとする。 [a,b]内で連続となる区間はM+1個できる。この連続区間を、取りうるxの小さいほうから順にT[k](k=1,2,…,M,M+1)と書く。 各区間T[k]の範囲は、 T[k]:[t[k-1]≦x≦t[k]] (k=1,2,…,M+1) (ただし、t[0]=a,t[M+1]=b) 各連続区間T[k]上の連続関数をf[k](x)(k=1,2,…,M+1)とする。 f(x)は[a,b]で有界だから |f(x)|≦F , |f[k](x)|≦F …(4) を満たす実数Fが存在する。 区間T[k]上でf[k](x)に対するリーマン・ルベーグの定理が成り立つことが言えれば、 [a,b]上のf(x)に対するリーマン・ルベーグの定理が成り立つことが言える。 f(x)の任意の連続区間T[k]=[t[k-1],t[k]]をN等分し、T[k]上の分割点を小さい方より、 t[k-1]=x[0]<x[1]<x[2]<…<x[l-1]<x[l]<…<x[N-1]<x[N]=t[k] とおく。 分割した小区間の長さを⊿xすると ⊿x=x[l]-x[l-1] (l=1,2,…,N) =(t[k]-t[k-1])/N すると求める積分は、 ∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx=Σ[l=1,N]{∫[x[l-1]→x[l]]{f[k](x)sin(nx)}dx} …(5) となる。このときxの範囲は、(x[l-1]≦x≦x[l])である。 (5)式に対し、その大小関係を考えていく。 |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx| ≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|・|sin(nx)|dx+|f[k](x[l])|・|∫[x[l-1]→x[l]]{sin(nx)}dx|} …(6) |sin(nx)|≦1 |f[k](x)|≦F より (6式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|・1・dx+F|∫[x[l-1]→x[l]]{sin(nx)}dx|} ≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx+F/n*(|cos(nx[l-1])|+|cos(nx[l])|)} …(7) |cos(nx[l-1])|≦1 |cos(nx[l])|≦1 より (7式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx+2F/n} =Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx}+Σ[l=1,N]{2F/n} …(8) f[k](x)の連続性から (x[l-1]≦x≦x[l])の範囲のx、及び任意の正の実数εに対して、 |x-x[l]|≦⊿x=x[l]-x[l-1]=(t[k]-t[k-1])/N ならば |f[k](x)-f[k](x[l])|≦ε を満たす⊿xがただ一つ定まる。このとき分割数Nも適切に取る。 (8)式に対し (8式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]{ε}dx}+2NF/n =Σ[l=1,N]{ε(x[l]-x[l-1])}+2NF/n =Nε(x[l]-x[l-1])+2NF/n =ε(t[k]-t[k-1])+2NF/n よって |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1])+2NF/n …(9) (9)式について 2NF/n≦ε となるようにnを大きく取れば |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1])+2NF/n ≦ε(t[k]-t[k-1])+ε =ε(t[k]-t[k-1]+1) 最終的に |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1]+1) …(10) の関係が言える。 参照したサイトでは、εは任意に取ることができるから、n→∞とすればε→0より lim[n→∞]|∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|=0 となり、リーマン・ルベーグの定理が成り立つと結論付けていますがε→0とするとき、 ∀ε>0,∀x[l]>0∈T[k],∃⊿x>0 s.t.∀x∈⊿x=x[l]-x[l-1], |x-x[l]|≦⊿x⇒|f[k](x)-f[k](x[l])|≦ε となるように⊿xを決めているから、ε→0 とするとき同時に ⊿x→0 になり、分割数Nを∞にする必要がでてきます。 結局はn→∞,ε→0としても、⊿x→0,N→∞としなければならず、 2NF/n≦εの関係からlim[n→∞]{2NF/n} (≦ε) は零に収束しないような気がします。 どうすれば答えが導けるでしょうか。

  • 微分に関する証明問題がわからなくて困っております。

    微分に関する証明問題がわからなくて困っております。 g(x)を整数係数の多項式とする n≧1を与えられた自然数としてf(x)=x^n*g(x)とする。 このとき、すべてのk=0,1,2...に対して、 d^k/dx^k(f(0))は、n!の倍数になることを示せ。 ライプニッツの公式あたりを用いるのでしょうか? 鉛筆が止まってしまって困っているので是非回答をお願いします。