• ベストアンサー

∫exp{-c(x/a-b/x)^2}dxの計算

以下の積分公式をどのように証明したらよいかご教示ください。 ∫[0→∞] exp{-c(x/a-b/x)^2} dx = (a/2)√(π/c) ガウスの積分公式∫[-∞→∞] exp(-nx^2) dx =√(π/n)  を使い、x/a-c/x=zと変数変換しようとしましたがうまくいきません。 ご存知の方よろしくお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.1

∫[0→∞] exp{-c(x/a-b/x)^2} dx = (a/2)√(π/c) 一つの方法として・・、 以下のラプラス変換L{f(t)}を既知として計算してみる・・! f(t) = 1/(√(πt))・exp(-k^2/4t)のラプラス変換L{f(t)}は L{1/(√(πt))・exp(-k^2/4t)} = (1/√s)・exp(-k√s) ∫[0→∞]{exp{-c(x/a-b/x)^2}}dx = e^(2bc/a)・∫[0→∞]exp{(-c/a^2)・x^2}・exp(-cb^2/x^2)dx x^2 = tとおくと2xdx = dt , dx = (1/2)・dt/√t 与式 = e^(2bc/a)・(1/2)・∫[0→∞]{exp{(-c/a^2)・t}(1/√t)・exp(-cb^2/t)}dt c/a^2 = s , cb^2 = k^2/4 と見れば ∫[0→∞]{exp{(-c/a^2)・t}(1/√t)・exp(-cb^2/t)}dt = (√π)・∫[0→∞]{exp(-st)・(1/√(πt))・exp(-k^2/4t)}dt = (√π)・(1/√s)・exp(-k√s) となるので、s , kを戻せば 1/√s = a/√c exp(-k√s) = exp(-2b√c・√c/a) = e^(-2bc/a) よって 与式 = (1/2)・e^(2bc/a)・√π・(a/√c)・e^(-2bc/a) = (a/2)・√(π/c)

mathstudy
質問者

お礼

ラプラス変換公式の L{1/(√(πt))・exp(-k^2/4t)} = (1/√s)・exp(-k√s) を使って証明できるのですね。 大変勉強になりました。 ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • ∫[0→t] exp(-a^2/x)dxの計算

    よろしくお願いいたします。  I=∫[0→t] exp(-a^2/x)dx (aは正の定数です。) この定積分の計算ができなくて困っています。 ご存知の方よろしくお願いいたします。 置換積分や部分積分をしてますが、うまくいきません。 a/√x=zと置いて置換すると∫[a/√x→∞] {exp(-z^2)}/z dz という積分項が出てしまい更に分からなくなってしまいました。

  • ∫1/√(x^2+a)dxの求め方

    ∫1/√(x^2+a)dxの求め方 積分公式の一つに ∫1/√(x^2+a)dx=log{x+√(x^2+a)}+C(Cは積分定数) がありますよね。 これってどのように証明すればよいのですか? x=asinθで置換積分してもうまく解けないのですが…。

  • ∫(0,∞){x/(exp(x)+1)}dx=π^2/12 の解き方を

    ∫(0,∞){x/(exp(x)+1)}dx=π^2/12 の解き方を教えてください。 岩波 数学公式Iにこの公式が載っているのですが、どのように式変形をして答を得るのかが分かりません。 よろしくお願いします。

  • 積分∫[-∞,∞]cosbx*exp(-ax^2)dx

     タイトルの実定積分を複素積分を利用(留数定理等)して行いたいのですが、上手くいきません。  a=const>0,b=const,ガウス積分利用可です。  フーリエんとこ勉強していたのですが、 形的には∫[∞,∞]exp(-ikx)*f(x)dxが一般的な形ではないかと・・ f(x)=exp(-ax^2)の場合です。 よろしくお願いします。

  • ∫exp(x)/x dxの積分

    こんにちは。 ラプラス変換で微分方程式を解く問題をといておりましたところ、 以下の式が出てきました。 L{X(t)} = (3+2s)/{(1+s)(2+s)(3+s)} L{Y(t)} = (2+4s+s^2)/{s(2+4s)} これを逆ラプラス変換してX(t)およびY(t)を求めようと思います。 部分分数展開して積分を行ったのですが、その際どうしても以下の 積分を求める必要が出てきます。 ∫exp(s)/s ds ……(1) ∫exp(s)*s^n ds において、nが自然数なら、部分積分で求めることができるのですが、 nが負の整数の場合、部分積分を行うと(1)で手詰まりになってしまいます。 仮に(1)を部分積分しても、 [(log|s|)exp(s)] - ∫(log|s|)exp(s) ds となり、∫(log|s|)exp(s) ds を求めることができないので、先に進めません。 どうやれば(1)の積分は解けるのでしょうか?

  • 複素積分 ∫[-∞→∞] (sinx)/x dxについて

    ∫[-∞→∞] (sinx)/x dx=π について教科書の解説を見ても理解出来ないところがあったので教えてください。 手持ちの教科書では次のような流れで計算をしていました F(z)=exp(iz)/zとおく F(z)はz=0に1位の極を持つのでz=0を避けるような経路C(添付図)をとる … (1) D2は半径εの半円弧である F(z)はCで正則なので∫[C] F(z)dz = 0 … (A) F(z)の経路C=R+U+L+D1+D2+D3においてR,U,Lでの積分は0(証明長くなるので省略) また、D2での積分は ∫[D2] F(z) dz = ∫[D2] {F(z)-(1/z)} dz +∫[D2] (1/z) dz と分けるとF(z)-(1/z)はz=0で正則なのでε→0のとき積分の値は0 … (2) ∫[D2] (1/z) dz は z=εexp(iθ)とおいて計算すると-πiになる (A)でX,Y→∞ ε→0とすると ∫[-∞→∞] (exp(ix)/x dx - πi =0 …(B) exp(ix)=cos(x)+isin(x)より、 ∫[-∞→∞] (cosx)/x dx + i∫[-∞→∞] (sinx)/x dx = πi 両辺の虚部をとって 虚部をとって∫[-∞→∞] (sinx)/x dx=π ここまでが教科書での解答の大まかな流れです 疑問点は以下のとおりです A:(1)で0を避けた理由 B:(2)でF(z)=F(z)-(1/z)+(1/z)と分けたのはどこから来たのか C:(2)でF(z)-(1/z)はz=0で正則とあるがz=0で1/zは定義できないのに正則? D:D1とD3は回答中で触れてないが無視していいのか E:この問題はタイトルの積分を留数定理で解けという問題だったのですが留数定理使ってないような? 長くなりましたがよろしくお願いします

  • ∫(ax^n + b)^α dxに対する不定積分の公式を探しています

    ∫(ax^n + b)^α dxに対する不定積分の公式を探しています 本には ∫(ax + b)^α dx = {(ax + b)^(α+1)} / {a(α+1)} + C   (a≠0) という、xが1次の場合の不定積分の公式は載っています。具体的には ∫(2x + 1)^2 dx = {(2x + 1)^3} / {2(3)} + C みたいなのですね。 ただ、 ∫(ax^n + b)^α dx のように、xの次数が高い場合は載っていません。 ネットで検索しても見つかりません。 ∫(2x^2 + 1)^2 dxなら展開してから不定積分を行えば良いのですが、 ∫{x(a^2 - x^2)^(1/2)} dx のような、もっとややこしい場合は展開もできません。 そのような場合はどうやって計算するのですか? 勘で ∫(ax^n + b)^α dx = {(ax^n + b)^(α+1)} / {ax^(n-1)(α+1)} + C と思ったのですが、違いますか? では、お願いします。

  • ∫(a,b)αf(x)dx=α∫(a,b)f(x)dxという定積分の性質の証明について

    aからbまでのf(x)の定積分を∫(a,b)f(x)dxと表します。 不足和・過剰和から始まって定積分を定義した後の、「f(x)が区間[a,b]でリーマン積分可能で、αが定数ならば、∫(a,b)αf(x)dx=α∫(a,b)f(x)dx」という定積分の性質の証明についてですが、大学初年級の理工学部向けの教科書・参考書ではこの定理の証明はたいてい「容易なので省略する」となっており、私が見た中で唯一証明してあるのは「微分積分学1」(三村征雄、岩波全書)です。 この本(235ページ)によると、α≧0、α≦0の二つの場合に分けています。α≧0の場合は容易ですが、α≦0のときにはsup(-f(x))=-inff(x)であることを示してからひとつの補題を証明し、その後に上の証明に取り掛かっています。これによると、この定理は、どうも「容易なので省略する」とはいえないような気がします。 そこでお尋ねですが、 1 αの場合分けをしないなどして、定積分の定義から容易に、それこそ2,3行ぐらいで証明する手法はありますか? (ただし、f(x)が連続関数であるときの定理∫(a,b)f(x)dx=F(b)-F(a)(F(x)はf(x)の原始関数)というルートは使わないものとします。) 2 もし、容易でないにもかかわらず証明を省略する場合は紙数の都合によるのでしょうか? 3 初学者には容易ではないのに、著者がそう判断してしまっているということはありえますか? 以上、よろしくお願いいたします。

  • lim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxが示せません

    宜しくお願いいたしました。 [問]各n∈Nに対し,f_n(x)=nx/(1+nx),x∈[0,1]とする。 数列{f_n}は[0,1]で積分可能関数fには各点収束するが一様収束しない事を示せ。 そしてlim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxとなる事を示せ。 で「lim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxとなる」が示せずに困っています。 f(x)= 1/e (x=1の時) 1 (0<x<1の時) 0 (x=0の時) と積分可能関数fが求めました。 でも 0<x<1の時 lim[n→∞]∫[0~1](f(x)-f_n(x)) =lim[n→∞]∫[0~1](1-nx/(1+nx))dx =lim[n→∞]∫[0~1](1/(1+nx))dx =lim[n→∞][-n/(1+nx)^2]^1_0 =lim[n→∞](-n/(1+n^2)+n) となり0になりません。何か勘違いしておりますでしょうか?

  • ∫{{(x+1)^n - 1} / x}dx = ?

    nは任意の自然数です。 ∫{{(x+1)^n - 1} / x}dxの積分がわかりません。 ∫{(x+1)^n / x}dx - ∫(1/x )dxと変形することを思いついたのですが、すると今度は∫{(x+1)^n / x}dxがわかりません (^^; nを定めてからの積分ならできるのですが、そうすると(x+1)^nの展開と、xで割って積分する作業が煩雑この上ありません。 こういった式でも「∫x^ndx=x^(n+1)/(n+1) + C」のように簡潔な形に出来ないものでしょうか? 見覚えのない形の式の積分ですが、そもそも積分が可能でしょうか。

このQ&Aのポイント
  • EXCEL初心者の方からの質問です。マクロを使用して、右側のセルの値を自動カウントし、複数の関数を実行し、集計結果を左側のセルに表示したいとのことです。
  • 具体的には、右側のセルに値を入力し、それを基に複数の関数を使用して値を集計します。集計結果は左側のセルに表示されます。また、行数が増えた場合でも正確な集計結果が得られるようにしたいとのことです。
  • 質問者さんはマクロに慣れておらず、どのシートを使用すれば良いかも分からない状況です。マクロの書き方やシートの選び方についてアドバイスをいただけると助かります。
回答を見る