• ベストアンサー

積分のやり方を教えてください

f(x)=g(h(x)) ∫f(x)dx=F(x)+C1 ∫g(x)dx=G(x)+C2 ∫h(x)dx=H(x)+C3 が成立するとき、これを積分するには、どの式が正解ですか? ∫f(x)dx=∫g(h(x))dx=G(h(x))+C ∫f(x)dx=∫g(h(x))dx=g(H(x))+C ∫f(x)dx=∫g(h(x))dx=G(H(x))+C

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

No.1です。 ANo.1の補足の質問について >ありがとうございます。 h(x)=ax という単純な式の場合は ∫g(ax)dx=G(ax)+C が成立しますか? 一般的には成立しません。 a=1のときに限って成立します。 >∫g(ax)dx=G(ax)+C (a≠1,a≠0) ← 成立しない。 正:∫g(ax)dx=(1/a)G(ax)+C (a≠0) [注] ANo.1で回答した公式 ∫g(h(x))h'(x)dx=G(h(x))+C で h(x)=axとおけば h'(x)=a なので ∫g(ax) a dx=G(ax)+C aで割って ∫g(ax)dx=(1/a)G(ax)+(1/a)C =(1/a)G(ax)+C' と導出できます。

oshieteyooo
質問者

お礼

ありがとうございます。

その他の回答 (1)

  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

>どの式が正解ですか? 全て正しくありません。 正しい積分公式は  ∫f(x)dx=∫g(h(x))dx  ∫g(h(x))h'(x)dx=G(h(x))+C です。

oshieteyooo
質問者

補足

ありがとうございます。 h(x)=ax という単純な式の場合は ∫g(ax)dx=G(ax)+C が成立しますか?

関連するQ&A

  • 不定積分についてです

    (置換積分) f:[a,b]→[c,d]がC^1級でg:[c,d]→Rが連続であるとき次の式が成立する ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy この定理が成り立つのは良いのですが,不定積分について ∫g(f(x))f'(x)dx =∫g(y)dy が成り立つ理由がわかりません… 部分積分も同様に,定積分の式ならわかるのですが、不定積分について ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) となる理由がわかりません。 大学数学での不定積分のきちんとした定義とともに、 ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) の成り立つ理由がわかる方がいらっしゃいましたら回答よろしくお願い致しますm(__)m

  • 部分積分の導き方・・・、

    部分積分法を導くとき、積の微分の公式 { f( x )g( x ) } ′= f ′( x )g( x )+f( x ) g ′( x ) 、を使いますよね。 教科書には、両辺の不定積分を考えて、 ∫{ f( x )g( x ) } ′dx = ∫{ f ′( x )g( x )+f( x ) g ′( x ) } dx ・・・(1) になり、 f( x )g( x ) = ∫f ′( x )g( x )dx + ∫f( x ) g ′( x )dx・・・(2) と書いてあります。(1)から(2)へ式変形するとき、左辺は、f( x )g( x )+Cになると思うのですが、Cはどこへ消えたのでしょうか?

  • 部分積分の疑問

    部分積分とは、部分的に積分するものですよね。全体を積分しなくてもいいんでしょうか。 { f( x )g( x ) } ′ = f ' ( x )g( x )+f( x ) g ' ( x ) の両辺を積分し,式を整理すると, ∫ { f( x )g( x ) } ' dx =∫ { f ' ( x )g( x )+f( x ) g ' ( x ) }dx f( x )g( x )=∫ f ' ( x )g( x ) dx+∫f( x ) g ' ( x )dx ∫f( x ) g ' ( x )dx =f( x )g( x )-∫f ' ( x )g( x ) dx となり,部分積分法の公式が求まる。 とあるのですが、f( x )g( x )を求めなくてはいけないのでは、と思ってしまうのですが。

  • 部分積分とParsevaの等式

    f∈C^3 g∈C^2 f(0)=f(h)=f´´(0)=f´´(h)=0 g(0)=g(h)=0とする このときAn=∫f(x)sin(nπx/h)dx (0からhまで) Bn=∫g(x)sin(nπx/h)dx (0からhまで) はΣn^2|An|<∞  Σn|Bn|<∞を満たすことを示せ おそらく部分積分とParsevalの等式を使うと思うのですが 導き方がわかりません。どなたかご教授いただけませんか?

  • 微分、積分の一般化

    微積分の一般化について、 dを差分演算子として df(x):=f(x+h)-f(x) と定めれば、普通の微分は df(x)/dx=(f(x+h)-f(x))/hで普通の定義と一致し、xを任意のg(x)とすることで、 df(x)/dg(x)=(f(x+h)-f(x))/(g(x+h)-g(x))として微分を一般化でき、積分についても ∫を差分演算子の逆、総和演算子として定めれば ∫f(x)dxの微分を考えたとき d∫f(x)dx/dx=f(x)dx/dx=f(x) として通常の微分と一致し ∫f(x)dg(x)=∫[f(x)dg(x)/dx]dx=∫[f(x)*g'(x)]dxとして一般化できますよね? さらにこの定義なら連鎖律などを簡単に計算できますよね? これは微積分の一般化になりますか? それとこの定義の仕方について触れているweb等があれば教えてください

  • 積分の途中式に関して

    微分積分の問題です。 途中式もわかりやすく書いていただければと思います。 ∫(f(g(x))´dx=∫f´(z)・z´dxを積分するとf(g(x))=∫f´(z)dzになるらしいのですが、途中式はなく、なぜそうなるかわかりません。 詳しいかた、教えて頂ければ幸いです。

  • 微分積分

    微分積分のやり方がイマイチ分かりません。 (1)∫2xdx=x^2+C を積分した時に、なぜx^2+Cになるのですか。細かく途中式を書いて下さい。 (2)∫4x^3log x dx の式で微分すると簡単になる方をfすると、あるのですが、どう調べるのですか。そして =∫logx・(x^4)'dx で、なぜ4x^3がx^4になったのか詳しく教えて下さい。

  • -πからπの積分を-1から1の積分に

    integ_{-pi}{pi} { f(x) }dx --- (1) これを C * integ {-1}{ 1 } { f(t) } dt --- (2) にしたいのですが、Cは単純にpiとなると考えてよかったでしょうか? 置換積分など使って式(1)から式(2)に変換できたでしょうか? -1から1の範囲のガウス積分を-piからpiのガウス積分に置き換えようとしています。

  • 畳込み積分について

    畳込み積分で分からないところがあります。 例えば、次のような関数があるとします。 f(x)=Bx^2 (x<x1) Cx (x1≦x≦x2) Dx^2+Ex (x2<x≦x3) Nx^2 (x>x3) 要は、xの領域毎に関数式が異なるような場合です。 この式に、次のような式を畳込みするとします。 g(x)=K*e^(-x^2/3) 畳込みの式が次のように表されます。 h(x)=∫f(x)g(t-x)dt(積分範囲は -∞~∞ です) このとき、式を分解すると h(x)=∫(Bx^2)*g(t-x)dt (x<x1,積分範囲 -∞~x1) ∫(Cx)*g(t-x)dt (x1≦x≦x2,積分範囲 x1~x2) ∫(Dx^2+Ex)*g(t-x)dt (x2<x≦x3,積分範囲 x2~x3) ∫(Nx^2)*g(t-x)dt (x>x3,積分範囲 x3~∞) でいいんでしょうか?一番聞きたいのは積分範囲は 領域毎に上記のようにするんでしょうか? それとも積分範囲は、xの領域に関わらずに全て -∞~∞に統一して計算するんでしょうか?

  • 変数分離法で積分するときの積分変数について質問です。

    変数分離法で積分するときの積分変数について質問です。 例えば、dy/dx=yという式を変数分離法で解く時、両辺にdxをかけて、両辺をyで割って、1/ydy=dxという形にして両辺を積分します。このとき、教科書を見ると「∫1/ydy=∫dx+C」となっており、積分定数がついています。 積分の定義は「∫f(x)=F(x)+C」のように、積分を行ったものに積分定数がつくと習いました。しかし、変数分離の式「∫1/ydy=∫dx+C」では積分を行う前に積分定数がついています。これはなぜなのでしょうか?どなたかわかる方がいらっしゃいましたら教えてください。