円の回転移動とy=-xとの部分の回転体の体積

このQ&Aのポイント
  • 円の回転移動とy=-xとの部分の回転体の体積を求めるために、まずは円上の点を原点のまわりに45°回転させる方程式を求める必要があります。
  • 次に、円と直線y=-xで囲まれる領域のうちの右上の部分を、直線y=-xを軸に回転させてできる立体の体積を求めます。
  • 詳しい計算方法については不明ですが、解くための方法を理解したいという質問者の状況が伺えます。どなたか助けていただけないでしょうか。
回答を見る
  • ベストアンサー

だ円の回転移動と、y=-xとの部分の回転体の体積

曲線の45°回転をよく理解していません。sin,cosを使った変換公式に入れればよいのでしょうか。次の問題(1)で回転移動したあとの方程式がわからないので、(2)の積分計算まで至らないままです。定積分の式が出れば、多分計算はできると思います。それで、本当に勝手なのですが、今夜のうちに、何とかして解きたいとバリバリ焦っている有様です。誰か急いで助けていただけないでしょうか。どうぞよろしくお願いします。 <問題> x^2+3y^2=2 で与えられるだ円Cを考える。 (1) だ円C上の点(x,y)を原点のまわりに45°回転した点を(X,Y)とするとき、(X,Y)がみたす方程式を求めよ。 (2) だ円Cと直線 l(エル):y=-x とで囲まれる領域のうちの右上の部分を、直線 l を軸に回転してできる立体の体積を求めよ。 

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.3

(1) 楕円x^2+3y^2=2 を反時計周り(左回り)に45°回転するには x=Xcos45°+Ysin45° y=-Xsin45°+Ycos45° を代入して(X,Y)の式が移動後の楕円の式になります。 つまり (Xcos45°+Ysin45°)^2+3(-Xsin45°+Ycos45°)^2=2 (X+Y)^2+3(-X+Y)^2=4 4X^2-4XY+4Y^2=4 4で割り、流通座標に置き換えると x^2-xy+y^2=1 ...(1)の答え (2) 45°回転させる前で考えれば x^2+3y^2≦2 (x≧0) をy軸の周りに回転した楕円体の体積なので楕円体体積公式 V=(4/3)πabcを用いれば  V=(4/3)π(√2)^2*√(2/3)=8(√6)π/9 ...(2)の答え まともに体積積分して求めてもいいですが、上のように考えれば暗算でも答えが出せます。 となります。

mathsmaths
質問者

お礼

1日延ばしてもらいながら、(1)は図形位置として考えていたら、三角比を使った公式に辿り着くことができました。その上、教えてもらった解答と一致! ていねいな説明を書いてもらって、大感激です。(2)も自分なりに体積積分にトライしてみます。本当にありがとうございました!!!

その他の回答 (2)

  • k14i12d
  • ベストアンサー率55% (41/74)
回答No.2

(1)つまり原点の周りの45°回転を表す行列をAとすると、p=(x,y),q=(X,Y)←どっちもベクトルとします。 として、Ap=qで表されるから、これを計算して、それぞれの座標の関係式が得られる。 連立して解くだけ。 (2)は素直に(1)を利用して解く(計算は割と煩雑だが、普通に積分するだけになる)か、わざわざ流れに逆らい、媒介変数表示して、積分するかの2つが思いつく。 どちらにせよ計算は煩雑。

mathsmaths
質問者

お礼

急ぎ解法を書いていただき、どうもありがとうございました。ただ、あいにくなことに、行列がイマイチなので、別の方針で進めていました。数学が弱いと、正解がわかっていなければ、いつの間にか泥沼に入ってしまいます。でも、指針を示してもらい、重ねてお礼を。

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

(x, y) を (X, Y) で書く. ただ, 努力と根性があれば (1) を無視して (2) だけ解くこともできるはずなんだが....

関連するQ&A

  • 楕円を回転 体積

    xyz空間内に 楕円C:x^2/4+y^2=1、z=0 直線l:z=x+2、y=0 がある。 楕円Cの周及び内部を直線lのまわりに1回転してできる立体の体積Vを求めよ この問題なのですが、直線に垂直な面で切って断面積を考えて、それを積分するという方針で解こうと思っているのですが、断面積の出し方がよくわからなくて困っています。 回答いただければ幸いです。お願いします

  • 楕円の回転体の体積を求める問題なんですけど、、

    「楕円:Xの二乗+1/2(Y-1)の二乗=1  の内部で、Yが0以上にある部分をX軸の周りに回転して得られる立体の体積  を求めよ」 という積分により体積を求める問題です。 スタンダードという解説が非常に不親切な問題集に載っているもので、また、 積分の計算過程などもよく分かりません。 よろしくおねがいします。

  • 数学IIIの積分の体積(斜回転体)の問題

    斜回転体の体積を求める問題です。 (2)の(i)まではできたのですが。。(ii)ができません。 被積分関数が複雑になり目標の答えに到達できないです。 置換積分や前問までの結果を用いるとはうまく計算できると 思うのですが。。ご教授ください。 宜しくお願いします。 ●次の(1)、(2)の問いに答えなさい。 (1) 次の不定積分の値を求めなさい。   (i) ∫xe^x dx (ii) ∫x^2 e^x dx (2)xy平面上に曲線C:y=(e^x-1)/2 と直線l(エル):y=xがある。 Cとlの交点のうち、原点以外の点をAとし、そのx座標をαとする。 また、C上の0≦x≦αの部分に点Pがあり、そのx座標をtとする。 このとき、次の(i)、(ii)の問いに答えなさい。 (i) Pからlに垂線を引き、lとの交点をHとする。線分OHの長さをtを   用いて表しなさい。 (ii) Cとlで囲まれた部分を直線lの周りに1回転させてできる立体の    体積をVとするとき、V=(□α^3-□α^2+□α)πと表せる。    □に当てはまる値を求めなさい。

  • 回転移動した楕円

    長軸と短軸の長さが分かっている原点中心の楕円ですが、 原点を中心としてα[°]だけ回転移動した楕円の x切片およびy切片は求めることは可能でしょうか? それとも、楕円関数などの難しい計算になるのでしょうか? ご回答よろしくお願いします。

  • y=xを回転軸とする回転体の体積 (再)

    添付の画像の定積分Vを上手に計算できる方法はないでしょうか? 被積分関数を展開して、項ごとに部分積分などを考えて計算すれば答えに辿りつけますが、計算量が多くてまいっています。(これぐらい計算しろってこと?) 本質的には、Vは、関数 y=x と曲線 y=(e^x - 1)/2 によって囲まれる部分を y=x を軸として回転して得られる回転体の体積を表しています。 ちなみに、問題文は、 Vは次の式で与えられる。ア、イ、ウにはいる数適切な式を答えよ。 V = (アα^3 + イα^2 + ウα)π  として与えられています。Vがαの3次式の形で表されることがわかっていますが、このことは、 Vの計算に役立つでしょうか? αは2つのグラフの交点のうち原点でない方のx座標(y座標)で、 e^α=2α+1 を満たします。

  • 回転してできる体積

    x=a,x=b(a<b),x軸,y=f(x)で囲まれる図形をx軸で回転してできる体積Vは V=π∫(a→b){f(x)}^2 dx で与えられる。 それの応用として、 (問)y=x+2,y=x^2で囲まれる図形を、y=x+2で回転してできる体積を求めよ. という問題を考える。 注;ハート型の半分を回転させることに注意 軸が傾いていることと、半ハート型の回転により、分けて積分しなければいけないので、計算がいやらしい。 ところで、xy平面上に直線lがあり、lとある曲線で囲まれる閉領域Dがある. このとき、Dをlを軸に回転してできる体積Vは V=2π∬(D)d(P)dxdy で求めてみたところ、どうやら答えが同じになる。 ここでd(P)とは xy平面上の点P(x,y)に対して d(P):=直線lと点Pとの距離 これを使うと、この問題の計算が格段に楽になる。 ただ問題なのは、この公式は正しいのか?ということである。 だれか、この公式が正しい、または間違っていること分かる方、解答をお願いします。 (lがx軸に平行なときは一致することは自分で確かめてみました)

  • y=xを回転軸とする回転体の体積

    添付の画像の定積分を上手に計算できる方法はないでしょうか? 式を展開して、部分積分などを使って計算する方法しか思いつかず、とても大変でまいってます。 関数 y=x と曲線 y=(e^t - 1)/2 によって囲まれる部分を y=x を回転軸として得られる回転体の体積Vを求める問題なのですが・・・。 V = (アα^3 + イα^2 + ウα)π ・・・※ のア・イ・ウを求める問題です。※と表されることがわかっていることは、計算のヒントになるでしょうか?問題にはVが※の形で表されるとヒント?があります。

  • 回転した楕円を任意の直線に投影した長さの求め方

    回転した楕円を任意の直線に投影した長さの求め方 長軸を2a、短軸を2bとした場合の楕円x^2/a^2+y^2/b^2=1(楕円上の点は(a*cosθ、b*sinθ))を、長軸とx軸との角度φとして回転させ、原点を通る任意の直線(例えばx軸との角度ψが10度の直線)に投影した長さ(例えば、x軸(ψ=0)なら楕円が収まる長方形の横の長さ)の求め方が分かりません。 今のところの考えでは、 (1).回転後の楕円を求める。 ⇒x^2+y^2=a^2*(cosφ)^2+b^2*(sinφ)^2 (楕円上の点は(a*cosθ*cosφ-b*sinθ*sinφ、a*sinθ*cosφ+b*cosθ*sinφ)) (2).投影する直線の式を求める。 ⇒? (3).(2)の直線と(2)の直線の垂線で楕円と1点で接する直線の交点の座標を求める。 (4).(3)の点と原点との距離を算出し、投影した長さを求める。 というように考えていますが、(2)のところで行き詰ってしまっています。 長くなりましたが、 ・そもそも、この考えかたは合っているのでしょうか。 ・あっている場合、(2)以降を教えていただけると助かります。 ・他に計算が楽になる求め方は無いでしょうか。 よろしくお願いします。

  • y=x軸回転の体積計算

    どこかで見た問題なのですが解答もなくこれが答えだという確信がなくてこまってます。 y=xとy=x~2で囲まれた面積をy=xを軸にして回転してできる立体の体積を求める。 ひとつとして原点からy=x上の点をtとおき法線を考えてy=x~2までのキョリをtの関数としてだしたのちにt(0→√2)で積分していくイメージがあるのですが計算が好ましいようにいきません。 またふたつめとして最終的にできる立体的図形をz軸を作って考えてz=kのときのxy平面をkの関数として出しzの値域で積分…、なんて考えてます が結局うまくいってません>< わかる方教えてください。基底の変換の解き方もあるのかなって考えてます。

  • 回転楕円体の方程式

    回転楕円体の方程式を算出しようとしています. 3次元空間上において,ある2点,F(a1,b1,c2),F'(a2,b2,c2)を考えます. この2点からの距離の合計が等しい点を,P(x,y,z),FP+F'P=L1とします. この場合,F,F'の中点(a3, b3,c3)を中心とした回転楕円体となり,以下の式になるかと思います. (x-a3)^2/A^2+(y-b3)^2/B^2+(z-c3)^2/C^2=1 ここで,B=Cで,短軸と考えた場合,2A=L1より,A=L1/2. 中心から,FまでのよりをL2とした場合,3平方の定理より,B=sqrt(A^2-L^2). となるかと思うのですが,あっているでしょうか? 手元の幾何学の成書がなく,ご指導頂けると助かります.