• ベストアンサー

円柱と球面の囲まれる部分の体積曲面積を求める問題で

円柱S1:x^2+y^2=axと球面S2:x^2+y^2+z^2=a^2,a>0を考える。 (1)S1とS2によって囲まれる部分の体積を求めよ。 (2)球面S2が円柱S1によって切り取られる部分の曲面積を求めよ。 という問題がわかりません。 解説を加えてもらえると幸いです。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

円柱S1:x^2+y^2=ax ...(A) 球面S2:x^2+y^2+z^2=a^2 ...(B) x=rcosφ,y=rsinφ,z=zとおいて円筒(円柱)座標に変換する。 円柱S1:r=acosφ(-π/2≦φ≦π/2) ...(A') 球面S2:r^2+z^2=a^2(0≦r≦a) ...(B') (1) V=∫∫∫{x^2+y^2+z^2≦a^2,x^2+y^2≦ax} dxdydz =∫∫∫{r^2+z^2≦a^2,0≦r≦acosφ,-π/2≦φ≦π/2} rdrdφdz =4∫∫∫{0≦z≦√(a^2-r^2),0≦r≦acosφ,0≦φ≦π/2} rdrdφdz =4∫[φ:0→π/2} dφ∫[r:0→acosφ]rdr∫[z:0→√(a^2-r^2)dz =4∫[φ:0→π/2} dφ∫[r:0→acosφ]r√(a^2-r^2)dr =4∫[φ:0→π/2} dφ[-(1/3)(a^2-r^2)^(3/2)][r:0→acosφ] =4∫[0→π/2} (1/3)[a^3-a^3*(sinφ)^3]dφ =(4/3)a^3∫[0→π/2}{1-(sinφ)^3]dφ =(4/3)(π/2)a^3-(1/3)a^3∫[0→π/2}4(sinφ)^3 dφ =(4/3)(π/2)a^3-(1/3)a^3∫[0→π/2} {3sinφ-sin(3φ)}dφ =(2/3)πa^3-(1/3)(a^3)[-3cosφ+(1/3)cos(3φ)][0→π/2} =(2/3)πa^3-(1/3)(a^3){3-(1/3)} =(2/3)πa^3-(8/9)a^3 =2(3π-4)(a^3)/9 (2) 球面S2が円柱S1によって切り取られる部分の曲面積は対称性から z=f(x.y),D={(x,y)|x^2+y^2≦ax,x^2+y^2+z^2≦a^2,0≦z}とおくと S=2∫∫{D} √{1+(fx)^2+(fy)^2}dxdy =2∫∫{D} √{1+(fr)^2+(fφ/r)^2}rdrdφ z=f(r,φ)=√(a^2-r^2) fr=∂f/∂r=-r/√(a^2-r^2),fφ=∂f/∂φ=0 D→E={(r,φ)|0≦r≦acosφ,-π/2≦φ≦π/2} E→E2={(r,φ)|0≦r≦acosφ,0≦φ≦π/2} なので S=2∫∫{E} √{1+(fr)^2} rdrdφ =2∫∫{E} r√{1+r^2/(a^2-r^2)} drdφ =2a∫∫{E} r/√(a^2-r^2) drdφ =4a∫∫{E2} r/√(a^2-r^2) drdφ =4a∫[φ:0→π/2] dφ∫[r:0→acosφ] r/√(a^2-r^2) dr =4a∫[φ:0→π/2] dφ[-√(a^2-r^2)][r:0→acosφ] =4a∫[0→π/2] (a-asinφ)dφ =4a^2∫[0→π/2] (1-sinφ)dφ =4(a^2)[φ+cosφ][0→π/2] =4(a^2){(π/2)-1} =2(π-2)(a^2)

関連するQ&A

  • 球体と放物線に囲まれる曲面積体積を求める問題で・・

    放物面S1:z=x^2+y^2と球面S2:x^2+y^2+z^2=2を考える。 (1)S1とS2によって囲まれる部分の体積を求めよ。 (2)S1がS2によって切り取られる部分の曲面積を求めよ。 (3)S2がS1によって切り取られる部分(上の部分)の曲面積を求めよ。 という問題がわかりません。 できれば解説を書いてもらえると幸いです。 よろしくお願いします。

  • 曲面積 積分

    (1)曲面z^2=4axが柱面y^2=ax-x^2によって切り取られる部分の曲面積(a>0) (2)曲面x^2+y^2=2zの2平面z=0,z=1の間にある曲面積 (ヒント;極座標変換を使う) (3)柱面x^2+y^2=axによって切り取られる球面x^2+y^2+z^2=a^2の部分の曲面積(a>0) (4)2つの円柱x^2+z^2=a^2,y^2+z^2=a^2の共通部分の曲面積(a>0) (ヒント;S=16S1として0≦y≦x≦aの領域の曲面積S1を求める) この問題をといてください、お願いします。 積分範囲の出し方も詳しく説明してくれれば幸いです。

  • 重積分を使って曲面積を求める問題でわからないところがあります。

    重積分を使って曲面積を求める問題でわからないところがあります。 球面x^2+y^2+z^2=a^2の円柱x^2+y^2=axで切りとられる部分の曲面積を求めよ(a>0) 自分の解法は  z(>0)について解いてz=√(a^2-x^2-y^2),積分領域D:x^2+y^2<=axの上にある曲面積を2倍して Zx=-x/(a^2-x^2-y^2), Zy=-y/(a^2-x^2-y^2)より 求める曲面積s=2∬D √(1+Zx^2+Zy^2)dxdy ここでx=rcosθ,y=rsinθと置くとJ=r,積分領域DはM:0<=r<=acosθ,-π/2<=θ<=π/2 S=∫(-π/2→π/2)∫(0→acosθ)ar/√(a^2-r^2)drdθ =2a^2[θ+cosθ](-π/2→π/2)=2a^2π となったのですが、解答は D:x^2+y^2<=a^2,y>=0の上にある曲面積を4倍して求めていて、 S=4∫∫D a/√(a^2-x^2-y^2)dxdy ここでx=rcosθ,y=rsinθと置いて、M:0<=r<=acosθ,0<=θ<=π/2 S=4∫(0→π/2)∫(0→acosθ)r/√(a^2-r^2)drdθ =4a^2[θ+cosθ](0→π/2)=4a^2(π/2-1) となって答えが違ってしまうのですが、何故だかわかる方がいたら助けてください。

  • 積分 体積 表面積

    (1)円柱x^2+y^2=a^2(a>0)のxy平面の上方でかつ平面z=xの下方にある部分の体積 (2)双曲放物面z=xy,柱面(x-2)^2+(y-1)^2=1および平面z=0によって囲まれる部分の体積 (3)底面の半径aの直円柱から、その底面の直径を通り底面とα(0<α<π/2)の角をなす平面で切り取った部分の体積 (4)2つの放物柱面z=1-x^2,x=1-y^2によって囲まれる立体をxy平面で切った部分の体積 (ヒント;0≦z≦1-x^2,x≦1-y^2よりxy平面のD領域を求める。) 以上の問題をどなたか解いてください、お願いします。 積分範囲の求め方について詳しい解説がいただけると幸いです。

  • 曲面積

    (1)x+y+z=1    x、y、z>=0の部分の面積   答えは√3/2とあるのですが以下のような考えだとどこが間違っているのでしょうか?   z=1-x-y D={0<=x<=1 0<=y<=1}とすると zx=-1 zy=-1 S=∫(0→1)dx∫(0→1)√3 dy  =√3 (2)x^2+y^2=a^2(a>0)の内部にある円柱面x^2+z^2=a^2の表面積   上記の面積を表す式のf(x、y)としてz=√(a^2-x^2)   D={x^2+z^2<=a^2} と考えたのですが計算途中で明らかにややこしく、間違っているのだと思いました   どのように考えればよいのでしょうか? (3)錐面x^2+y^2=z^2z (z>=0)が球面x^2+y^2+z^2=a^2 (a>0)により切り取られる面積    これについてはお手上げです。何をf(x,y)にするのかDが何かもわかりません。   どなたかご教授頂けたら幸いです。

  • 体積を求める問題

    大学の数学の授業で出された問題で、何題かわからない問題があったので教えてください。 球x^2+y^2+z^2=a^2 (a>0) の内部にある円柱 x^2+y^2≦ax の部分の体積 楕円体 (x^2)/(a^2)+(y^2)/(b^2)+(z^2)/(c^2)≦1 (a,b,c>0) の体積 です。協力お願いします。

  • 曲面積

    曲面 z=x^2+y^2 の円柱面 x^2+y^2=a^2 の内部にある部分の曲面積 参考書によると、π/6[{√(1+4a^2)^3}-1] です。 特に、xとyの範囲がわかりません。 詳しい解説お願いします。

  • 円錐と円柱の重なり部分の体積を求める問題です

    大学入試問題なのですが、判らなくて困っています。 xyz空間内に底面がx^2+y^2≦4、z=0、頂点が(0,0,2)の円錐と、底面が(x-1)^2+y^2≦1、z=0、上面が(x-1)^2+y^2≦1、z=2の円柱がある(円錐、円柱ともに内部を含むものとする)。この円錐と円柱の共通部分をDとする。Dの体積Vを求めよ。 どなたか、教えて頂けると助かります。

  • 円柱と球の共通部分の表面積

    球x^2+y^2+z^2≦1と円柱x^2+y^2≦xとの共通部分の表面積を求めよ という問題で、球が円柱に切り取られる部分の面積はわかるのですが、 側面の部分の求め方がわかりません。 x,y,z≧0の部分で x,y平面上の円柱の中心を基準として円周上の点を (1+cost,sint)とおき ∫√(1-x^2-y^2)dx を変数変換してみたのですが、 このやり方はおかしいですよね。 わかる方いらっしゃいましたら方針だけでも 教えていただけると助かります。 よろしくお願いします。 ちなみに表面積は2π で側面の部分だけだと4になるようです。

  • 立体の体積の問題です

    球面x^2+y^2+z^2=a^2、円柱x^2+y^2=ay (a>0)および平面z=0で囲まれた部分の体積を求める過程を教えてください。答えは(π/3-4/9)a^3です。 x=rcosθ、y=rsinθとして 0≦r≦asinθ 0≦θ≦πで2重積分しましたが、どうにも答えが一致しません。