• ベストアンサー

宇宙の曲率Kの次元が【L^(-2)】の理由

はじめまして。よろしくお願いします。 宇宙論のRW時空に曲率Kが出てきます。 Rを曲率半径とすると K=1/(R^2) (>0) または K=ー1/(R^2) (<0) または K=0 と3通りあります。 これらの曲率Kの次元は【L^(-2)】ですが、 「曲線の曲率」K_lの次元は【L^(-1)】です。 曲線の曲率K_lの方は教科書を読んで、どういう理由で次元が【L^(-1)】になったのかわかるのですが、 RW時空の方の曲率Kのほうは、どのとうな理由から次元が【L^(-2)】になるのか?よくわからなかったです。 できれば、詳しく教えていただけないでしょうか? よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

曲率半径の逆数としての曲率を立てたラグビーボールに当てはめると、経線方向の曲率が小、緯線方向の曲率が大となります。円柱の側面なら高さ方向の曲率はゼロです。 円柱の側面に住んでいる二次元人は自分がいるのが平面なのか円筒面なのかはわかりません。 平面なのか球面なのかなら「円周率を測定してみる」という方法で区別できます。この方法で求められるのがガウス曲率です。ガウス曲率は上記の曲率と関係はありますが別物です。 ここから先はリンク先等をご参照のこと。RW計量の曲率はガウス曲率のことみたいですね。 曲線の曲率の符号が曲率半径の符号(右カーブか左カーブか)に対応するとすると、その曲率をそのまま当てはめても「負の半径の球」になってしまい「鞍形面」にならない感じがしませんか?このあたりに【L^(-2)】である理由がありそう

参考URL:
http://www.geocities.jp/maeda_hashimoto/tor/tor_ch02pr03p04.htm

その他の回答 (1)

  • ibm_111
  • ベストアンサー率59% (74/124)
回答No.1

RWメトリックの導出を見ればいいわけですが http://homepage2.nifty.com/eman/relativity/flrw.html どのような理由と言われても・・・ 導いてみたらそうなるとしかいいようがない気がします。 結局、メトリックは三平方の定理の拡張なわけで、等方を仮定すると、 ds^2=f(r)dr^2+(θ、φ方向) (時間軸は無視) ここで、一様を仮定すると、f(r)=f(-r) したがって、f(r)は実はr^2の関数でこの次元をキャンセルするために R^-2が出てくるわけですが。 なんでR^-4やR^-6でないのかと言われたら、 RWメトリックの導出を見るしかないんじゃないかと。

関連するQ&A

  • 曲率Kの次元は?

    『なっとくする宇宙論』という簡単な宇宙論に関する読み物を読んでいて、宇宙の曲率Kの次元についてわからなかったので、質問したいと思います。 質問内容は添付画像に書いてありますが、簡単に言うと、 曲率Kの次元が、ロバートソン・ウォーカー計量からは、距離の-2乗の次元であるように思うのですが、 フリードマン方程式からは、無次元のように思います。 元々の曲率の定義を思い出すと、 K=1/R^2 なので 距離の-2乗の方が合っているようにも思うのですが。 フリードマン方程式は、ロバートソン・ウォーカー計量をアインシュタイン方程式に適応させて求めたはずなので、何故このような次元の違いが出てくるのか?よくわかりません。 曲率の次元は本当はどちらなのでしょうか? よろしくお願いしますm(*- -*)m

  • 宇宙の曲率

    ビッグバン宇宙論で、「宇宙全体の『曲率』が平坦である」というのを読みました(『ガリレオがひらいた宇宙のとびら』)。 (以下引用)  なじみやすい例として、線路や道路のカーブがどの程度きついか、という曲率があります。この曲率は三次元空間では、二次元のものについて(つまり道路や線路のように線について)定義できます。  同じように四次元空間の宇宙でも、三次元空間である宇宙の曲率が定義できるのです。この曲率がほとんどゼロであるというのも、非常に不自然です。ビッグバン宇宙論では、曲率をすこしでももっていると、その曲率を大きくする方向に進むはずなのです。これが宇宙の平坦性問題というものです。 曲率を辞書で引くと、「曲線の曲がりの度合い」とあります。 道路や線路の曲がりの度合い、はわかるのですが、宇宙の曲率というのは、何だと考えればいいのでしょうか。 星を見るのは好きですが、天文学に詳しいわけではないので、なにかわかりやすい例とかあったら教えていただきたいのですが。 よろしくお願いします。

  • 3次元球面の曲率を考える時、なぜ4次元を考える?

    3次元球面の曲率や曲率半径を考えています。 『なっとくする 宇宙論』(二間瀬敏史)p101によると 半径Rの3次元球面を考えよう。これは4次元の平坦なユークリッド空間のなかの3次元球面を指す。平坦な4次元空間にデカルト座標系(x,y,z,ω)をとると、この球面の方程式は、 x^2+y^2+z^2+ω^2=R^2 となる。 (引用以上) 質問としては、なぜ3次元球面の曲率半径を考える時に4次元空間を考えるのでしょうか? どうしてω項が入るのでしょうか? よろしくお願いします。

  • 曲率半径について教えて下さい。

    曲率半径は、ある曲線の円に近似するもので、以下のような式で表されるそうなのですが、 180*ΔL/π*Δθ これってつまり、まっすぐな線があって、途中できれいに1°だけ曲がってものも、379°で曲がっているものも、理想的な曲がり方をしていれば、曲率半径はゼロ→すごい鋭いカーブになるということなのでしょうか?

  • 曲率の表し方

    三点が与えられている場合、曲率半径(1/R)を求めることが出来ます。 ここで、曲りの強さについて、rad/m (度/m)という単位であらわされている場合があるのですが、これは曲率半径と同じものなのでしょうか。 半径Rの円で考えてみると、 角度がΘの扇形の曲線部の長さがRΘとなり、 その時の接線ベクトルのなす角の変化はΘとなるので、 1/R=Θ/RΘで単位は、rad/mとなるような気がします。 さらに言うと、360/(2π*R) 度/mとなると思うのですがどうでしょうか。

  • 3次元のリッチスカラー 一般相対論 リーマン幾何

    3次元球面のリッチスカラー曲率についての疑問です。 よく知られたように、2次元球面(半径r)のガウス曲率はK=1/r^2 で、 リッチスカラー曲率はR=2/r^2 です。両者にはR=2Kの関係があります。 本やwikipediaなどによると、 一般的に、半径rのn次元球面のリッチスカラー曲率はR=n(n-1)/r^2 となるようです。(ガウス曲率との関係は R=n(n-1)K です) http://ja.wikipedia.org/wiki/%E3%82%B9%E3%82%AB%E3%83%A9%E3%83%BC%E6%9B%B2%E7%8E%87 そうすると、3次元球面のリッチスカラー曲率は R=6/r^2 になります。 (閉じたロバートソン・ウォーカー時空の、空間部分にあたるものです) ここで疑問なのですが、なぜ3次元の曲がりなのに、 r^2のような2次元の曲がりの量を用いて表現可能なのでしょうか? 2次元の曲率が1/r^2 に関係する量になることは、 ガウス曲率の定義(1次元の曲率 1/r の2方向の曲がりの積を取る) などからも素直に理解できます。 3次元で素直に考えると、3次元のガウス曲率は3方向の曲がりの積を取り、 1/r^3のように表現され、リッチスカラー曲率もr^3の逆数に比例する量で 表されそうな気がしてしまいます。 「空間の曲がり」が「曲面の曲がり」で表現できてしまう事が どうもよく分からずにいます。どうぞよろしくお願い致します。

  • 曲線の曲率の計算について

    曲線の曲率の計算における過程で、(1/x^2)/((1+(1/x^2))^3/2)という計算なのですが、 結果はx/(x^2+1)^3/2となるらしいのですが、どう計算してこうなったのかわかりません。 ちなみにこれはf(x)=logxの曲率を求める過程ででてきたものです。 また、現状は曲率を求める公式に当てはめて値を求めているのですが、 曲率とはいったいなんなのかさっぱりわかりません。 インターネットで調べたところ曲率とは、ようするに物理などででてくる加速度みたいなもので 曲率半径は、ようするに円の半径のようですが、 なぜ加速度や半径と言わないで、わざわざ別の言葉で曲率という言葉を使うのでしょうか? それから参考書をみてみると曲率の証明する過程で、 曲線r(t)=x(t)i+y(t)jの単位接線ベクトルはT=dr/dsで与えられる。 ここでs=∫√((dx/dt)^2+(dy/dt)^2)dtは曲線の長さであると書かれているのですが、 なんのことを言っているのかわっぱりわかりません。 イメージが出来ない感じです。 r(t)=x(t)i+y(t)jのところは曲線上の位置を表しているのかなとなんとなく理解できますが、 単位接線ベクトルや曲線の長さであるというところがわかりません。 どなたか教えてください。 わかりやすい回答お待ちしております。

  • 曲率円の方程式

     図のように y = x^2 において点(1,1) で接する曲率円の方程式を求めようとしているのですが、うまくいきません。  曲線 y = f(x) の曲率円の半径を R とすると   1/R = ( 1/(1+(dy/dx)^2)^(3/2) )(d^2y/dx^2) なので y = x^2 の曲率は   f'(x) = dy/dx = 2x   d^2y/dx^2 = 2   (dy/dx)^2 = 4x^2 より   1/R = 2/(1+4x^2)^(3/2)   R = (1+4x^2)^(3/2)/2  したがって (1,1) で接する曲率円の半径は   R = 5^(3/2)/2  また、f'(1) = 2 なので y = x^2 の (1,1) における接線の傾きは 2、法線の傾きは -1/2。したがって曲率円の中心(x0,y0)は   x0 = 1 - (5^(3/2)/2)(2/√5) = 1 - 5^(3/2)・5^(-1/2) = -4   y0 = 1 + (5^(3/2)/2)(1/√5) = 1 + (5^(3/2)/2)・5^(-1/2) = 1 + 5/2 = 7/2  また   R^2 = 5^3/4 = 125/4 なので x = 1 における y = x^2 の曲率円の方程式は   (x+4)^2 + (y-7/2)^2 = 125/4 ・・・・・※  これでいい思ったのですが、正しくないようです。というのも (1,1) での※の陽関数表示は図より   y = -√( 125/4 - (x+4)^2 ) となると思うのですが、x = 1 のときは   y = -√(125/4 - 25) = -√( 125/4 - 100/4 ) = -5/2 となってしまいます。どこがおかしいのでしょうか。

  • 曲率の問題

    xyz空間のxz平面内に、z軸と交わらない曲線z=f(x)(x>0)がある。この曲線をz軸周りに1回転してできる曲面Sを考察するとする。 1. 曲面Sの独立な接ベクトルを2つ求めよ。 2. 曲面Sの単位法線ベクトルn(r, θ)を求めよ。 3. 曲線Sの第一基本形式(誘導計量)Iを求めよ。 4. 曲線Sの第二基本形式(外的曲率)IIを求めよ。 5. 曲線Sのガウス曲率Kと平均曲率Hをそれぞれ求めよ。 という問題なのですが 教えてください。 テスト前で困っています。

  • 感情の次元

    こんばんわ 1次元から3次元は、以下のことで分けられています。 1次元は数直線・時間 2次元は画像、絵画、図面、地図 3次元は3次元物理空間。 4次元はこの宇宙は、3次元(物理)空間と1次元時間からなる4次元時空(ミンコフスキー時空) wikipediaより。 では、感情は何次元だと思いますか? できれば「○次元」だと思った理由もお願いします。