• ベストアンサー

常備分方程式d^2y/dx^2+4y=sin2x

常備分方程式d^2y/dx^2+4y=sin2xの一般解を求める問題で、特殊解をAsin(2x)+Bcos(2x)とおいたのですが、左辺が0になってしまいました。どうしたらよいのでしょうか。どなたか教えてください。

  • NRTHDK
  • お礼率60% (198/327)

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

定数変化法などでもよいですが,少し計算が煩雑そうです. これはラプラス変換で特殊解を求めた方が楽です.ラプラス変換については工科系向けの微分方程式の教科書には必ず解説してあります.こうした常微分方程式を学ぶ場合にはラプラス変換は必ず学ぶはずです. まず,y(x)(x≧0)のラプラス変換Y(s)(Re(s)>0)は Y(s)=∫_0^∞e^{-sx}ydx で定義され,y⇔Y(s)の変換には線形性があります.そして,yおよびその導関数の初期値がすべて0であるような場合,微分はsをかけることに相当するので s^2Y(s)+4Y(s)=2/(s^2+2^2) となります.ここで sin(ax)⇔→a/(s^2+a^2) を使いました. Y(s)=2/(s^2+4)^2 =2{1/{(s-2i)(s+2i)}}^2 =2{(1/(4i)){1/(s-2i)-1/(s+2i)}}^2 =(-1/8){1/(s-2i)^2+1/(s+2i)^2-2/(s^2+4)} ここで xe^{ax}⇔1/(s-a)^2 も使うと y=(-1/8){xe^{2ix}+xe^{2ix}-sin(2x)} =-xcos(2x)/4+sin(2x)/8 こうして簡単に特殊解が求まりました. ラプラス変換は通常x<0のとき0となる関数のみ扱います.しかし,ここで得られたyはx<0でも通用します.実際 dy/dx=-cos(2x)/4+xsin(2x)/2+cos(2x)/4 d^2y/dx^2=sin(2x)/2+sin(2x)/2+xcos(2x)-sin(2x)/2 =sin(2x)-4y となり,xは任意の実数として差し支えありません. とにかくこうして特殊解が求まりましたから,一般解は同次形の一般解Asin(2x)+Bcos(2x)と合わせて y=Asin(2x)+Bcos(2x)-xcos(2x)/4+sin(2x)/8 となります.A,Bは初期条件から決まります.

NRTHDK
質問者

お礼

ありがとうございました。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「常備分」じゃなくて「常微分」. 定数変化法.

関連するQ&A

  • 1.(d^4y/dx^4)+(2d^2y/dx^2)+8dy/dx)+

    1.(d^4y/dx^4)+(2d^2y/dx^2)+8dy/dx)+5y=0 2.(dy/dx)+1-x-x^2-(2x+1)y-y^2=0 3.{(x+1)d^2y/dx^2}+{(4x+5)dy/dx}+(4x+6)y={(x+1)^2}e^(-2x) の一般解を求めたいです。 解答解説をお願いします。

  • 二階微分方程式の問題

    y"+4y=2xsin2x 解:Asin2x+Bcos2x-1/4x^2cos2x+1/8xsin2x の問題なのですが、 補助方程式y"+4y=0の一般解は特性方程式から、 Asin2x+Bcos2xとわかるのですが。 特殊解の-1/4x^2cos2x+1/8xsin2x の求め方がわかりません。 どなたか教えてください。

  • 微分方程式ydy=(y^2 + 1)dxについて

    微分方程式:ydy = (y^2 + 1)dx, y(0) = 0 を解くと、一般解がy^2 = Ce^2x - 1 (Cは任意定数)となると思うのですが、解答に載っていたy(0) = 0のときの特殊解が、y = √(e^2x -1) となっていました。 y = -√(e^2x -1) は、なぜ特殊解として書かれていないのでしょうか? どなたかご教授ください。どうぞよろしくお願いします。

  • 微分方程式、x=0,y=0のときなどの確認

    微分方程式、x=0,y=0のときなどの確認 すべて一般解を求めよ、という問題です。 cosydx+sinydy=0 積分因子を用いて、 (e^x)cosy=C を導きましたが、その過程でsiny≠0のときとしてsinyで割っています。 確認方法ですが、y=2nπのとき、x=lnC=C′より、方程式に代入して、 ∫1dx=0 x=-C=C″ より、解は(c,y)を含む、ということでいいんでしょうか? 別問で、 方程式 3xydy+(x^2+y^2)dy=0 x≠0,y≠0のとき 解 (3/2)・x^2・y^(2/3)+y^(8/3)=C x=0のときy=0 よって、(0,0)を含む となりましたが、上の場合は、はっきりと数値が出ない、任意定数もそれぞれlnCと-Cが元になっているわけですし、確認計算のために合っているかどうか、スッキリしません。 もう1つ (dy/dx)+y/x=sinx/x という方程式なんですが、 左辺=0の方程式の解を最初に求めるとき、y≠0とします。 この解がy=c/x となります。 この後、定数変換法で解いていくわけですが、ここでも、y=0のときxは任意、(c′,0)は含むただしx≠0ということでOKでしょうか?

  • 微分方程式で答えの左辺がyじゃなくて(y-x)^2

    次の微分方程式の一般解を求めよ。 dy/dx = y-x + 1 + 1/(y-x) という問題ですが、本の答えが      (y-x)^2 = C'c^(2x) - 1 になっています。 この本では、それまでの問題の答えはすべて y = ○△□ + C のような形で、左辺が y= でした。 ですので、何故この問題では(y-x)^2を展開して y= の形にしないのか疑問です (しかも、この問題以降も左辺が y= ではない答えばかりになっています)。 確かに、展開しても      y^2 -2xy = e^(2x) e^(2c) - x^2 - 1 辺りで行き詰ってしまいますが・・・。 y= にすべきときとそれ以外のときの判定方法というのはありますか? どうかお願いします。

  • 定数係数線形微分方程式で右辺がsin、cosの場合

     定数係数線形微分方程式で右辺がsin、cosの場合、その特性方程式の解が実数の場合には、yo = Asin(ax+b)+Bcos(ax+b)の形の特殊解があり、虚数解iaをm重根もつ場合には、yo = x^m{ Asin(ax+b)+Bcos(ax+b) }の形の特殊解があることは理解できました。  もし、特性方程式が3次以上でその解が実数と虚数解の両方を持つ場合には、その特殊解はどのような形になるのでしょうか?  例えば、 y'''-y''+y-1=3sin(2x+1) の場合、その特性方程式は (t-1)(t^2+1)=0 から t= 1,±i となると思います。この場合の特殊解はどのような形になるのでしょうか?アドバイスいただければと思います。宜しくお願い致します。

  • 微分方程式

    次の微分方程式を解けという問題がわかりません。 y''+4y=sin2x 特性方程式s^2+4=0よりs=±2i(虚数解) 補助方程式の一般解はy=Asin2x+Bcos2x 与方程式の右辺を微分して生じる関数は2sin2x,2cos2xであるが、 これらは上の一般解に含まれている。重複度は2なので、 特殊解を求めるために、 y1=ax^2*sin2xとおく y1'=2a(xsin2x+x^2cos2x) y1''=2a(sin2x+4xcos2x-2x^2sin2x) これらを与方程式に代入すると 2asin2x+8axcos2x-4ax^2sin2x+4ax^2sin2x=sin2x となってしまって解けませんでした。どこを直せばいいでしょうか?

  • 微分方程式の演算子法

    dy/dx=Dy,d^2y/dx^2=D^2y Dを演算子とします。 (2D^2+2D+3)y=x^2+2x 解:exp^(-1/2x){Asin(√5/2)x+Bcos(√5/2)x}+1/3x^2+2/9x-16/27 の特殊解の求め方がわかりません。 特性方程式が因数分解できない(複素数になる)と、 公式に当てはめられず解けなくなってしまいます。 どなたか教えてください。

  • 古典的波動方程式に関する式変形

    ある微分方程式の一般解である以下の式 x(t)=c1cosωt+c2sinωt を次のような等価な形式で表す。 x(t)=Asin(ωt+φ) x(t)=Bcos(ωt+ψ) この時、x(t)に対する3つの式が全て等価であることを示し、 AとφおよびBとψのそれぞれをc1とc2で表わす式を導け。 という問題があります。 x(t)=Asin(ωt+φ) sin(α+β)=sinαcosβ+ cosαsinβ sin(ωt+φ)=sinωtcosφ+ cosωtsinφ x(t)=Bcos(ωt+ψ) cos(α+β)=cosαcosβ- sinαsinβ cos(ωt+ψ)=cosωtcosψ- sinωtsinψ という関係を用いればよいのでしょうが、AとBの取り扱いがわからりません。どのように考えたらよいのでしょうか?

  • 2階斉次線形微分方程式 P(x')=-1/x' ?

    x^2 (d^2 y)/(dx^2) - x dy/dx + y = 0 の一般解を求めよう。 前の例で示したように、x^2 (d^2 y)/(dx^2) - x dy/dx + y = 0 の基本解の1つは y_1 = x である。これと1次独立なもう1つの基本解は、式(3.9)を用いて次のように求まる。 y_2 = y_1 ∫ 1/y_1^2 exp (-∫P(x') dx') dx = x ∫ 1/x^2 exp (-∫(-1/x') dx') dx       ← P(x') = (-1/x') ? = x ∫ 1/x^2 exp (log x) dx = x ∫ x/x^2 dx = x log |x| よって、一般解は y = c_1x + c_2x log |x| となる。 ・・・という問題で、なぜ P(x') = (-1/x') になるのか分かりません。 この本ではx'というのは、その前のページに書かれている解説で初めて出てきました:      (d^2 z)/(dx^2) + (P(x) + 2 1/y_1 dy_1/dx ) dz/dx = 0 で、X(x) = dz/dx とおいて X(x)についての微分方程式を次のように解くことができる。      dX/dx + (P(x) + 2 y_1'/y_1) X = 0      dX/X = - (P(x) + 2 y_1'/y_1) dx      log X = -∫(P(x') + 2 y_1'/y_1) dx' + C     ←ここ ・・・と続くのですが、いまいちここが理解できていません。 これはきっと、左辺はXで、右辺はxで、両辺を積分したんですよね? このx'というのは元の数字の微分したものだと思うんですけど、 上の問題のように P(x) = - x の場合、x'は幾つになりますか? そして、なぜ P(x') = (-1/x') になるんですか? 教えてください。よろしくお願いします。