• 締切済み

【至急!!】円柱の切断の側面積

急ぎで教えて欲しいです!!円柱の切断の問題です。円柱切断後の側面積の出し方が分かりません。。 積分で出すと思うのですが、sinθの曲線とx軸で囲まれた部分の積分のやり方が分かりません。 切断する角度をθとすると、切り口の曲線の式は、、y=sinθでいいのでしょうか?図のような曲線でいいですよね? また、円柱の直径をDとすると、底辺が2πなのかπDなのかよく分かりません。 円柱の底面の円周だからπDだと思うのですが、360°だから2π?? もう混乱してしまい・・・・お願いします!

みんなの回答

  • Dr-Field
  • ベストアンサー率59% (185/313)
回答No.2

図で求めたい側面積って、切断前の円柱の側面積の1/2ではないでしょうか? で、切断面と底辺の角度をθとし、底辺の半径をrとすると、高さは 2r・tanθですよね。 だから、幅2πr、高さ2r・tanθの紙で作った円柱を2つに切った側面積ということで、(2πr×2r・tanθ)×1/2=2πr^2・tanθ ←No.1の方と同じ答えなのですけれどもね。 これ、θ=30°とか45°とか60°だと、中学入試にも出そうな問題に見えます。

  • nag0720
  • ベストアンサー率58% (1093/1860)
回答No.1

>切断する角度をθとすると、切り口の曲線の式は、、y=sinθでいいのでしょうか? 切断する角度をθとするならθは定数ですからy=sinθとはなりません。 直径Dの円柱を角度θで切断してから側面を平らにしたときの切り口の曲線をxy座標で表すと、 y=(D/2)tanθ{1-cos(2x/D)}  (0≦x≦πD) 面積は、 S=∫[0→πD](D/2)tanθ{1-cos(2x/D)}dx  =[(D/2)tanθ{x-(D/2)sin(2x/D)}][0→πD]  =(πD^2/2)tanθ

関連するQ&A

  • 切断面の面積

    以前、 (1)底辺の一辺が8cmの正三角柱がある。この三角柱を、底面に対して45度の角度で切断したとき、最大の切断面の面積はいくらか。 答えは【16√6】だそうです。 という質問がありましたが、私も算定しようとしましたが、できませんでした。直感的には断面積は16√6から32√3の間で16√6は最小値のような気がします。 私は、三点、(8sinθ,8cosθ,z1)、{8sin(θ+2/3π),8cos(θ+2/3π),z2}、{8sin(θ-2/3π),8cos(θ-2/3π),z3}、がx+y+√2z=0に乗るとしてz1,2,3を求めて、内積から面積を求めようとして挫折しました。 どのように求めるのでしょうか?

  • 円柱から切り取った部分の体積

    底辺の半径が3cmの円柱がある。底面の直径を含み、底面と45°の角をなす平面で円柱を切り取った。この切り取られた円柱の体積を求めよ。 という問題があるのですが 教科書はこの切り取られた部分を直角二等辺三角形にたてに切って積分しているのですが、横に切って半円の集合と考えてはだめなのでしょうか?

  • 円柱を切断した体積

    問題 半径1の円を底面とする高さ1/√2の直円柱がある。底面の円の中心をoとし直径を1つ取りABとおく。ABを含み底面と45°の角度をなす平面でこの直円柱を2つの部分に分けるとき、体積の小さい方の部分をVとする。 Vの体積を求めよ。 この答えは、 π√2/16+1/3-5√2/24 で合っていますか。 よろしくお願いします。

  • 高さa,底面の円の半径aの円錐を、底面の円の中心を通り、底面と45°の

    高さa,底面の円の半径aの円錐を、底面の円の中心を通り、底面と45°の角度で交わる平面で 切断したとき、小さい方の体積を求めよ。 これを次のように考えましたが、答えとは異なるのですが、 考え方のどこが間違っているのか分かりません。考え方を示しますので 誤りをご指摘ください。 最初に切断したときの切り口をS1とする。 次に小さい方の体積を切り口S1に平行な平面で切った切り口をS2とする。 このとき、S1とS2は相似な図形だから、以下、S1に平行な平面で切った 切り口はすべて相似であることから、この切り口の面積を積分すると求める体積になると 思いました。 中心を通って、S1と45°になる直線をX軸にして、中心のX座標を0として、 積分の式は、S1の面積をAとするとA×∫[0~a](a-x)^2/2dxとなりました。

  • 円柱を有る角度で切った場合の長軸の角度の求め方を教えてください

    以前円柱を有る角度で切断した場合に出来る楕円の計算方法をお教え頂きましたが。今回Ф76.2の円柱で軸は初めはZ軸に平行で、X軸周りに13度、Y軸周りに8度に傾けて切断した時の断面形状の計算式はお教え頂いた計算の仕方から、Z軸に平行な単位ベクトルez=(0,0,1)をX軸周りに13度まわすと (0、sin13°、cos13°)これを更にY軸周りに8度まわすと (cos13°sin8°、sin13°、cos13°cos8°)でZ軸とのなす角をθとすると ezとpの内積は 1・1・cosθ=0+0+cos13°cos8°   θ≒arccos(0.9648)≒15.228°   楕円形状は 短円=76.2   長円=76.2/cos15.228°≒78.972 だと思うのですが(余り自身が有りませんが)、長円はx軸に対して角度が付いた状態で有ると思いますが、その角度の計算方法が分かりません申し訳ありませんが再度お教え下さい。

  • 円の面積 小学校で、どう教わりましたか?

    昭和40年代に小学校へ入学して卒業した世代の者です 小学校で円の面積は次のように教わった記憶があります。 ・円を中心から細かく分割する ・半径に添って切って、扇形のギザギザ状態にする ・それを二分割して、ギザギザを合わせてくっつける ・ギザギザを物凄く細かく細かくすると、長方形になる ・長方形の高さは、円の半径 ・長方形の底辺は、円周の半分なので、直径×円周率(3.14)÷2 ・円を長方形化したので、長方形の面積が円の面積 ・長方形の面積は、底辺×高さなので、半径×直径×円周率(3.14)÷2 ・直径÷2=半径なので、式を整理すると ※ 円の面積=半径×半径×円周率(3.14) 以上、こんな感じでした 小学生時代は何だかインチキ臭いなぁ(笑)と思いましたが、正確な数学的な円の面積は、高校生になって積分を教わるまで知りませんでしたが… 皆さんは、小学生時代に、どう教わりましたか? 年代も一緒に教えて頂けると幸いです また、現代はどう教えているのかも別途お願いします

  • 回転体の表面積

    x軸、y軸に平行な辺をもち、楕円に内接する長方形を、y軸のまわりに回転してつくった直円柱の表面積ですが、長方形の第一象限の頂点を(x,y)とすると、直円柱の表面積は 2つの底面の面積:2πx^2 側面積:2π*x*2y=4πxy より 2πx^2+4πxy であっているでしょうか?

  • どんな図形?

    どんな図形? 問題文:ある立体の底面は、曲線y=sinx(0≦x≦π)とx軸とで囲まれた図形 で、この立体をx軸に垂直な平面で切った切り口は底辺がsinxで高さがx の三角形である。この立体の体積を求めよ。 上記のような問題です。 もうお気づきかもしれませんが数IIIの積分の問題です。 文章から問題は解けたのですがまったく図形が想像できません。 曲線y=sinx(0≦x≦π)とx軸とで囲まれた図形→そうですか 切り口は底辺がsinxで高さがx→はい?どこをどう切れば?さっきと言ってる事変わってない? 見たいな感じで困惑しています。 どなたか図示してください。お願いします。 またグラフとか立体とかの形を見るのに使えるソフトをご存知でしたらぜひ教えてください。

  • 円柱の運動について

    力学の問題を解いていると、 『直径d、質量Mの円柱が角度θの斜面を滑ることなく転がって落ちる』 という問題をよく目にするのですが、 円柱がどのような運動をしているから、『円柱が斜面を滑ることなく転がって』という運動になるのでしょうか? ふと疑問に思ったので質問しました。 わかる方、ご教授お願いします!

  • サイン曲線の面積と円の面積の関係

    サイン、あるいはコサイン曲線とx軸に囲まれた面積と円の面積は形は違っても同一であることを直感的に把握する方法はありますか。サイン曲線の範囲や円の大きさなどの条件をうまく表現できません。