• 締切済み

3次元ユークリッド空間内の直線

3次元ユークリッド空間内の直線 連立1次方程式 y-2z=1 2x+2y+az=b 4x+3y=b 2x+y+z=c a,b,cは実数とします。 Q 方程式の解の全体が3次元ユークリッド空間内の直線になっているとき a,b,cの間に成り立つ関係を述べよ。 またその直線を表す方程式を求めよ 全然わかりません。 解の全体が3次元ユークリッド空間内の直線になるとは どのような状態のことなんでしょうか? よろしくお願いします

みんなの回答

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

一次方程式の解の存在について、 解がない(不能の場合)、 解が1組だけある(確定の場合)、 解が複数ある(不定の場合) があることを、まず復習しましょう。 それから、 方程式が不定の場合になる条件は何かと、 不定の場合の解がどんなものであるかも 確認しておくべきです。 結論から言えば、 一次方程式の階数が(変数の個数-1)で、 方程式に解が少なくともひとつ存在する 場合に、解集合が直線になります。 作業としては、問題の連立方程式の 係数行列と拡大係数行列のrankがどちらも2 になる条件を書き出せばokです。 参考↓ http://yonex1.cis.ibaraki.ac.jp/~yonekura/math/page4.html

全文を見る
すると、全ての回答が全文表示されます。
回答No.1

ユークリッド幾何学は、互いに直交する三次元空間内の幾何学です。 アインシュタインは、空間が重力によって曲げられるとして、宇宙空間での座標の歪みを指摘し、後に日蝕観測などにより太陽の裏側にある星が観測されたことで事実として認識され、今日では『重力レンズ』による、ある天体の裏側にある天体や、ダークマターの観測などにも利用されています。 つまり、X、Y、Zの座標軸が互いに直交もせず、直線でもない空間=非ユークリッド空間として、様々な解析に応用されます。 『3次元ユークリッド空間内の直線』とは、得られた解が直交座標系X-Y、X-Z、Y-Zの何れの平面内でも直線に成ると言う意味です。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 三次元ユークリッド空間上の直線の方程式は?

    三次元ユークリッド空間上で,直交座標を x, y, z とする時, 任意の平面は,a, b, c, d を実数として(abc ≠ 0), ax + by + cz + d = 0 で表されます. では,三次元ユークリッド空間上の任意の或る一つの直線の方程式は, 直交座標を x, y, z とする時,一般的に,どの様に表現されるのでしょうか? どなたか,教えて下さい.

  • 解空間の次元

    この連立一次方程式で     a  1 -2 -1 x =  1     1 -1  1  2 y =  0     2  1 -2 -1 Z = -5     1  0  1  a W = -3 1)解がない場合 2)解があってもただひとつ 3)解空間の次元が1より大きい の各場合のaを求めたいのですが 1)は上三角行列を作ってから右辺と左辺が成り立たないようにして、a=2,1/3 とでてたぶんできたと思うのですが 2)の解があっても一つというのは次元が0ということでしょうか? 3)また、解空間の次元が1より大きいというとき実際に次元を用いて解が求められません。教えてください。

  • 3次元の近似直線

    こんにちは。2次元で実験データなどの点列から近似直線を求めるのは、最小二乗法の基本問題ですが、3次元の点群から直線の方程式(x-x0)/a=(y-y0)/b=(z-z0)/cを求めるにはどんなアルゴリズムを使いますか?スマートな方法があれば教えていただけたら幸いです。よろしくお願いします。

  • 3次元空間にある2直線の再接近距離の求め方

    3次元空間に仮に次のような2直線があった場合の、お互いが再接近した場合の距離を求めたいのですが、解法がさっぱり思いつきません。 x = ( x2 - x1 )t + x1 y = ( y2 - y1 )t + y1 z = ( z2 - z1 )t + z1 a = ( a2 - a1 )t + a1 b = ( yb - b1 )t + b1 c = ( c2 - c1 )t + c1 いったん平面に直して考えたりする必要があるのでしょうか? それとも微積が絡むとか。。 何かしら公式があるとうれしいのですが(笑 解法をご存じの方いらっしゃいましたら、よろしくお願いします。

  • 3次元空間での傾き、切片の求め方

    ある点S(X1,Y1)からある点G(X2,Y2)の直線があると仮定します。 このとき 傾きA=(Y2-Y1)/(X2-X1) 切片BはY=AX+Bより    =Y-AX と、2次元空間の場合はわかります。 ですがこれが3次元空間になるとどのように解けばいいのか分からないです。分かる人がいたら教えてください。 ある点S(X1,Y1,Z1)からある点G(X2,Y2,Z2)の直線があると仮定します。 このとき 傾きA= ? 切片B= ?

  • 直線が空間の三角形内部を通るかどうか

    空間に3点(a1,b1,c1), (a2,b2,c2), (a3,b3,c3)と 2点(x1,y1,z1),(x2,y2,z2)を通る直線があります。 その3点がなす三角形内を直線が通るかどうか判別したいです。 よろしくお願いいたします。

  • 3次元空間上の2点を結ぶ線分の中点を知りたい

    3次元空間上の点A(x1, y1, z1)と点B(x2, y2 z2)を結んで出来る線分の中点を知りたいのですが、 完全な文系出身であまり数学に詳しくないため、公式の見方がよくわかりません。 Wikipediaの中点のページにあるn次元ユークリッド空間上の中点の公式がそれのようですが、 「n 次元ユークリッド空間上の2点 A, B を直交座標系であらわし、それぞれを (a0, ..., an-1), (b0, ..., bn-1) とすると」 の時点ですでに理解できないので、単純な公式で教えて下さると助かります。

  • 空間ベクトル

    空間内に2直線 x+1=(y-1)/a=z (1) -x+1=y+b=(z-1)/2 (2) があり(1)、(2)は交わり、そのなす角は60度である そのとき a=? B=? どのように解くかわかりません。 おねがいします 方程式を解くと x=-2/3 z=1/3 となったのですがどのように解くかわかりません。 空間においては、 ベクトルu=(p,q,r)に平行で、点(a,b,c)を通る直線の方程式は (x-a)/p=(y-b)/q=(z-c)/r と表すことができます。 また、ベクトルuのことを「直線の方向ベクトル」ということしかわかりません。 全くわからないのでおしえてください

  • 4次元空間上での平面の式

    任意の点を(x,y,z,u)とした4次元空間で (1)3次元の立体を表す式は ax+by+cz+du=e でいいですか? (2)2次元の平面を表す式は一般にどのような形になりますか? 上記のことに疑問を持った理由。 2次元空間で1次元の直線を表す式は、一般にax+by=cとなる。 これは、2点(x,y),(xo,yo)を通り、方向ベクトルが(a',b')で媒介変数tとして x=a't+xo y=b't+yo と書くこともできる。 3次元空間で2次元の平面を表す式は、一般にax+by+cz=d となる。 これは、 平面上の2点(x,y,z)と(xo,yo,zo)を結ぶベクトルとこの平面に垂直な直線の方向ベクトル(a,b,c)の内積が0であるという条件より導かれる。 実際に計算すると a(x-xo)+b(y-yo)+c(z-zo)=0 ax+by+cz=axo+byo+czo になり、ax+by+cz=dという形と同値であることが確認できる。 【別な考え】 3次元空間内の平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo)、Q(x1,y1,z1)、R(x2,y2,z2) とする。この平面上の任意の点X(x,y,z)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo) PQ↑=(a,b,c) PR↑=(a',b'c') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) という書き方も平面を表す式である。 実際に(1)と(2)から未知数t,sについてx,yの式で表すことができるので、それを(3)式に代入すれば、(1)(2)(3)式は、一つの式 a"x+b"y+c"z=d'という形になる。 直線を表す式は、媒介変数tを使って x=at+xo y=bt+yo z=ct+zo または、 (x-xo)/a=(y-yo)/b=(z-zo)/c=t となる。 4次元空間で同じように、 直線や平面や立体を考えてみた。 2次元では、(1,0)と(0,1)が直交の基底ベクトル。 3次元では、(1,0,0)と(0,1,0)と(0,0,1)が直交の基底ベクトル。 したがって、 4次元では、(1,0,0,0)と(0,1,0,0)と(0,0,1,0)と(0,0,0,1)が直交の基底ベクトル。 4次元空間では、点は4つの成分で表される。 4次元空間での直線について。 直線は2点が与えられば書ける。 2点(x,y,z,u)と(xo,yo,zo,uo)を通り、その直線の方向ベクトルが(a,b,c,d)だとしたら、媒介変数tを使って、 x=at+xo y=bt+yo z=ct+zo u=dt+uo となって (x-xo)/a=(y-yo)/b=(z-zo)/c=(u-uo)/d=t 次に4次元空間での3次元立体について。 2次元空間では、それより一つ次数が低い1次元の直線は一つの式 ax+by=c で与えられた。 3次元空間では、それより一つ次数の低い2次元の平面は、一つ式 ax+by+cz=d で表さられた。 したがって、4次元空間では、それより一つ次数の低い3次元の立体は、 ax+by+cz+du=e で表されるだろう。 【別な考え】 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する立体は一つしかない。なぜなら、4次元空間での基底ベクトルは4つで空間(立体)は3つの基底ベクトルで決定されて、残り一つが残っているからだ。 立体上の2点(x,y,z,u)と(xo,yo,zo,uo)を結ぶベクトルとこの立体に垂直な直線の方向ベクトル(a,b,c,d)の内積が0であるという条件で計算すると a(x-xo)+b(y-yo)+c(z-zo)+d(u-uo)= 0 ax+by+cz+du=axo+byo+czo+duo になり、ax+by+cz+du=eという形になる。 2次元の平面はどうだろうか? (ここからが本題) 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する平面は、2つあるはずだ。 なぜなら、4次元空間での基底ベクトルは4つで平面は2つの基底ベクトルで決定されて、残り2つが残っていて、それはこの平面に直交するように選べるからだ。 平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo,uo)、Q(x1,y1,z1,u1)、R(x2,y2,z2,u2)、 とする。この平面上の任意の点X(x,y,z,u)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo,uo) PQ↑=(a,b,c,d) PR↑=(a',b',c',d') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) u=uo+dt+d's.....(4) という書き方も平面を表す式である。 (1)と(2)を連立して、未知数t,sについてx,yの式で表すことができるので、それを(3)式と(4)式代入すれば、(1)(2)(3)(4)式は、2つの式 a"x+b"y+c"z+d"u=e' a"'x+b"'y+c"'z+d"'u=e" になる。 この2つの式からuを消去すれば、結局、 Ax+By+Cz=D という形になる。 zを消去すれば、 Ax+By+Cu=D yを消去すれば、 Ax+Bu+Cz=D xを消去すれば、 Au+By+Cz=D

  • 4次元空間について

    4次元空間に半径1、原点中心の超球(x^2+y^2+z^2+w^2=1)があります。これを、4次元における平面(例えばa*x+b*y+c*z+d*w=eといった平面)で切り取った切片、つまりこの平面と超球の共通部分はおそらく3つの変数で表せると思うのですが、その切片を3次元空間で表すとどんな図形になるのでしょうか? 考えているのですがイマイチつかめません。 どなたかお力添えをおねがいします。

このQ&Aのポイント
  • ブラザーのMFC-J737DWNを使用していますが、PCから印刷ができなくなりました。再インストールしても解決せず、プリンターが接続されているか確認できません。
  • 使用環境はWindows10で、無線LANで接続しています。関連するソフトやアプリはありません。電話回線はひかり回線です。
  • 具体的なトラブル解決方法については不明ですが、再度ファイルをアンインストールして再インストールすることを検討しています。
回答を見る