• 締切済み

この問題の回答お願いします。

数学のマークの問題です。 2次関数 y=x^2-2x・・・・・(1)について考える。 aを定数とし、(1)のグラフをx軸に関して対称移動した後、x軸方向にa、y軸方向に4aだけ平行移動したグラフをGとする。 このとき、Gを表す2次関数は、y=-x^2+ア(a+イ)xーa^2+ウaである。 よって、Gとy軸の交点のy座標は、a=エのとき最大値オをとる。 a=エのとき、Gとx軸の交点の座標は、カ±√キ である。 カー√キ≦x≦カ+√キ における2次関数(1)の最大値は ク+ケ√コ、最小値はシスである。 という問題なんですがよくわかりません。 どうか回答お願いします。

みんなの回答

  • tomokoich
  • ベストアンサー率51% (538/1043)
回答No.4

f(x)=x^2-2x をx軸に関して対象移動 y=-f(x)=-x^2+2x y=-(x^2-2x) =-(x-1)^2+1 x軸にa,y軸に4a平行移動すると G:y=-(x-1-a)^2+1+4a =-x^2+2(a+1)x-(1+a)^2+1+4a =-x^2+2(a+1)x-a^2+2a (ア)2(イ)1(ウ)2 y軸の交点のy座標はx=0の時だからy=-a^2+2aこれが最大値をとるのは y=-a^2+2a =-(a-1)^2+1 a=1の時y=1 (エ)1(オ)1 a=1の時 y=-x^2+4x-1+2 =-x^2+4x+1 x軸との交点の座標はy=0の時なので 0=-x^2+4x+1 x^2-4x-1=0 x=(4±√20)/2=2±√5 (カ)2(キ)5 y=x^2-2x =(x-1)^2-1 頂点(1,-1) なので2-√5≦x≦2+√5の範囲で最大値はx=2+√5の時 y=(2+√5)^2-2(2+√5) =4+4√5+5-4-2√5 =5+2√5 最小値はx=1,y=-1の時 (ク)5(ケ)2(コ)5(シ)-(ス)1 あっているかどうかわかりませんのでご自分で確認されてやってみてください

  • nattocurry
  • ベストアンサー率31% (587/1853)
回答No.3

図(グラフ)を描いてますか? その前に、考えようとしていますか? とりあえず、y=x^2-2x のグラフを描いてみましょう。 この問題は暗算でできる問題ではないことは確かです。 とにかく、手を動かしましょう。

noname#128437
noname#128437
回答No.2

少しは自分で考える努力すれば? いくつ質問してるねん…

  • kernel_kaz
  • ベストアンサー率23% (665/2872)
回答No.1

試験中じゃ無いよね?

bluebard_1993
質問者

補足

試験中でもないし、試験の問題ではありません(汗

関連するQ&A

  • 教えて下さい。

    数学の問題です。 aを定数とし、xの二次関数y=x^2+(2a-2)x-4a+2…(1) のグラフをGとする。Gの頂点の座標は (-a+1,-a^2-2a+1) である。 Gをx軸方向にa,y軸方向にaだけ平行移動したグラフがy=(x-1)^2のグラフと一致しているとき、 aの値は -1±√5/2 である。 以下、a=-1+√5/2 とする。 (1)Gの軸は直線 x= 何でしょうか?   また、二次関数(1)の-2≦x≦2における最大値と最小値は? (2)Gとy軸との交点のy座標をYとするとき Y= 何でしょうか?   G軸をy軸方向に-Yだけ平行移動したグラフをG1とするとき、G1の頂点のy座標は何でしょうか?   また、G1とx軸との交点のx座標は何でしょうか? 質問ばかりですみません。 宜しくお願い致します。

  • 下記問題の回答をお願いします。

    y=2x²+8x-10 (1)y≦0 となるxの範囲 (2)上の二次関数のグラフをx軸方向にa、y軸方向にbだけ並行移動させて得られる グラフをGとする。Gが原点(0,0)を通るときbをaで表しなさい。 (3)x=-1とx=3にたいする二次関数Gの値が等しくなる時のaを求めよ。 このとき二次関数Gの-1≦x≦3における最小値、最大値を求めよ。 宜しくお願いします。

  • 2次関数の問題です。

    2次関数y=ー2x∧2+ax+bのグラフをcとする。cは頂点の座標が (a/[ア],a∧2/[イ]+b) の放物線である。cが点(3,-8)を通るとき、     b=[ウ][エ]a+10 が成り立つ。このときグラフcを考える。 (1)cがx軸と接するとき、a=[オ]またはa=[カ][キ]である。a=[カ][キ]のときの放物線は、a=[オ]のときの放物線をx軸方向に[ク]だけ平行移動したものである。 (2)cの頂点のy座標の値が最小になるのは、a=[ケ][コ]のときで、この時の最小値は[サ][シ]である。 以上。 (1)までは理解できるのですが、(2)に苦しんでいます。わかりやすく教えてください。 宜しくお願いします

  • 高校数学の問題

    数学で分からない問題があるのですがどなたかお力添えを頂けると助かります。 2次関数y=4x^2+4px+3p-1・・・・・(1)について考える。ただし、p≠0とする。 (1)(ア)分の(イ)-√(ウ)<p<(エ)分の(オ)+√(カ) である。 p=1のときの(1)のグラフをG、p=-1のときの(1)のグラフをTとする。 G、Tの共有点をAとすると、点Aの座標は((キ)分の(クケ)、(コ)分の(サ))である。 (2)(1)のグラフをx軸方向にp、y軸方向にp^2だけ平行移動したグラフを表す2次関数は y=4x^2-(シ)px+p^2+(ス)p-(セ)・・・・・・(2)である。 (2)のグラフが点Aを通るときp=(ソタ)である。 このとき、2次関数(2)の-5≦x≦0における最大値は(チツ)、最小値は(テトナ)である。 xの2乗をx^2と表しています。 ア~ナに入るものを書けという問題なのですが分かる方よろしくお願いします。

  • 2009年センター数学

    数IAの問題です。 aを定数とし、xの二次関数     y=2x^2-4(a+1)x+10a+1・・・・・・・・(1) のグラフをGとする。 グラフGの頂点の座標aを用いて表すと    (a+ ア , イウ a^2+ エ a- オ ) である。 (1)グラフGがx軸と接するのは a= カ ±√キ /(←分数です) ク のときである。 見づらくて申し訳ありませんが 分かりやすくご説明いただけると幸いです☆

  • 二次関数 (全統マーク模試)

    a,bを定数とし、xの二次関数 y=-2x^2+ax+bのグラフをG1とする。 G1は点(1,-3)を通る。 (1)  b=-a-[ ア ]   であり、G1の頂点の座標は    ([ イ ]/a,[ ウ ]/a^2 -a-[ エ ])   G1がx軸と異なる2点で交わるようなaの値の範囲は     a<[オ ]-[カ ]√[キ ],[オ ]+[カ ]√[キ ]<a   である。 (2)xの二次関数 y=2x^2-ax-bのグラフをG2とし、G1,G2とy軸との交  点をそれぞれM,Nとする。   Mのy座標がNのy座標より大きくなるようなaの値の範囲は     a<[クケ ] であり、このとき、G1はx軸と異なる2点A,Bで交わる。 AB=[ サ ]/[ コ ]√a^2-[ シ ]a-[ ス ] であるから、AB:MN=5:4とすると a=[ タ ]/[ セソ ] である。 注)  AB=[ サ ]/[ コ ]√a^2-[ シ ]a-[ ス ] これは、 ( a^2-[ ウ ]a-[ エ ] ) がすべてルートの中に入ってます。 分かりづらくてすいません。 答え ア1イ4ウ8エ1オ4カ2キ6クケ-1コ1サ2シ8ス8セソ-3タ2 です。 (1)は解けるのですが (2)サ から先がいまいち理解できません。 問題が長くてすいません。  よろしければ どなたか説明お願いします。

  • 2次関数の問題です。

    数学マークの問題です。 (1)2次関数 y=x^2‐4x+5のグラフの頂点の座標は (ア,イ)である。 (2)2次関数 y=x^2+2x+10のグラフをx軸方向に2,y軸方向に‐3だけ平行移動して得られるグラフの方程式は y=x^2‐『ウ』x+『エ』である。 (3)2次関数 y=2x^2‐3x‐1のグラフを原点に関して対称移動して得られるグラフの方程式は y=『オカ』x^2‐『キ』x+『ク』である。 (4)2次関数 y=2x^2‐4x+3は、x=『ク』のとき最小値『コ』をとる。 また、2次関数y=‐3x^2‐12x‐20は、 x=『サシ』のとき最大値『スセ』をとる。 という問題がよくわかりません どうか解答お願いします

  • 2次関数の問題

    2次関数y=2x^2+2(a-2)x+bのグラフをCとし、Cは点(2,9)を通るとする。 (1)このとき、b=[ア]であり、Cは2次関数y=2x^2のグラフをx軸方向に[イ]、y軸方向に[ウ]だけ平行移動したものである。 (2)Cがx軸と共有点をもつような定数aの値の範囲は[エ]である。 (3)2次関数y=2x^2+2(a-2)x+bの定義域を-1≦x≦2に制限すると、k=[オ]とおいたとき、  ●k≧a>0ならばx=[カ]において最小値[キ]をとり、  ●a>kならばx=[ク]において最小値[ケ]をとる。

  • 指数関数の問題です。教えて下さい!

    2つの関数f(x)=3の2x乗、g(x)=3k-x乗(kは正の定数)がある。 またy=g(x)のグラフとy軸との交点をAとする。 y=f(x)とy=g(x)のグラフの交点をP、点Aを通りx軸に平行な直線とy=f(x) のグラフとの交点をQ、点Qを通りy軸に平行な直線とy=g(x)のグラフとの 交点をRとする。このときP,Q,Rの座標をそれぞれkを用いて表せ。 また、三点P,Q,Rに対して三角形OPAと三角形PQRの面積の比が3:1 となるようなkの値を求めよ。ただし、Oは座標の原点とする。 解き方がさっぱり分かりません。 詳しい解説をできたらよろしくお願いします!

  • 数学のマークの問題です。

    a,bを定数とし、xの2次関数y=2x^2+ax+bのグラフをGとする。 グラフGが点(-2,3)を通るとき、 b=(ア)aー(イ)であるから、Gの頂点の座標をaを用いて表すと {[(ウエ)/オ]a,[(カキ)/ク]a^2+(ケ)aーコ}となる。 さらに、関数y=2x^2のグラフをx軸方向に-1、y軸方向にkだけ平行移動したグラフをHとする グラフHがグラフGに重なるのは a=サ、b=シ、k=スのときである。 という問題なんですがよくわかりません。 どうか回答お願いします。