2つの数列に共通する項の数列の一般項を求める方法

このQ&Aのポイント
  • 2つの数列に共通する項の数列a[n]=3n+2と数列b[n]=8nを考えます。
  • 数列a[n]の項のうち、8の倍数のものを小さい順に並べた数列c[n]の一般項を求めたいです。
  • 数列a[n]の第k項が8の倍数の数列b[n]=8nの第l項になるとすると、l=(3n+2)/4が整数になるnを求めればよいですが、この方法は誤りです。適切な変形を行うと、数列c[n]=24n+8となります。
回答を見る
  • ベストアンサー

2つの数列に共通する項の数列

a[n]=3n+2(n=1、2、…) の項のうち、8の倍数のものを小さい順に並べた数列c[n]の一般項を求めたいです。 私は初め、a[n]の第k項が8の倍数の数列b[n]=8nの第l項になるとして8l=3k+2、変形して 2(4l-1)=3k…[*]からk=2n(n=1、2、…)と書けるから、c[n]=a[k]=…としようとしましたが、k=2nとしたら[*]に代入したらl=(3n+2)/4となり、必ず[*]を満たす整数の組(k、l)が存在するとは言えず、誤りでした。 一方8l=3k+2の変形の仕方を変えて、8(l-1)=3(k-2)とし、l-1=3n(つまりl=3n+1)とすると、k=8n+2は必ず整数になり、代入したらc[n]=a[k]=b[l]=8(3n+1)=24n+8となって、一応(8が抜けてますが…)式はでます。 前のやり方がどうしてよくない変形だったのか分かりません。l=(3n+2)/4が整数になるnをまた再び求めればいいのでしょうが、これだとはじめとやってることが変わりません(無限ループ?) 長文ですがどうか教えてください。

noname#128428
noname#128428

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

8l=3k+2 からでもいける. [*] から (2 と 3 は互いに素なので) ・k は偶数 なんだけど, 同時に ・4l-1 は 3 の倍数 ということもわかる. つまり「l-1 が 3 の倍数」であることに気づけば終わり. この辺は (整数を解とする) 不定方程式が分かっていれば難しくないはず. とはいえ高校まではやらないような気もするなぁ.

noname#128428
質問者

お礼

うう…条件が2つ読みとれるんですね…勉強不足です…ありがとうございます。

その他の回答 (3)

noname#157574
noname#157574
回答No.4

もっと簡単に求めよう。a[1]=5は8の倍数でなく,a[2]=8は8の倍数である。 ここで,3と8の最小公倍数は24であるから,c[1]=a[2]=8,c[2]=8+24=32 よってc[n]=24n-16

noname#128428
質問者

お礼

ありがとうございます。

  • f272
  • ベストアンサー率46% (7995/17090)
回答No.3

どちらも 2つの整数の積=2つの整数の積 にしているのに,片方はうまくいってもう片方はうまくいかない。 どこに違いがあるかといえば 2(4l-1)=3k ...........(1) 8(l-1)=3(k-2) .....(2) (1)の方の左辺が4l-1となっていて,4l-1は4つおきの数値しか取ることができません。これでは,まだまだ式の解析が甘いなあということですね。 その他のk,l-1,k-2はそれぞれの文字に掛かっている係数が1ですから飛び飛びにならないのです。

noname#128428
質問者

お礼

飛び飛びになることを気にもしてませんでした。ありがとうございます。

  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.1

こんにちわ。 まず、いくつか具体的にあてはめて c[n]の初項は求めておきたいですね。 8が初項になりますね。 そのあとですが、 8の倍数になるということは「(次の8の倍数までの)間隔が 8の倍数」 になっていないといけませんね。 式で表せば (3m+ 2)- (3n+ 2)= 8L ということです。 これを少し変形すれば、 a[n]の nについて何個おきに 8の倍数が現れるかがわかるはずです。

noname#128428
質問者

お礼

ありがとうございます。分かりやすいのでしっかり理解しておきます!

関連するQ&A

  • 2数列の共通項から新しい数列を作ります

    初項が1,公差が3の等差数列{An}と 初項が11,公差が10の等差数列{Bn} に共通に含まれる項を小さい順に並べてできる数列{Cn}の一般項Cnを求めよ。 ------------------------------- という問題で、自分でといてみたところ、 An=3n-2 {Bn}=11,21,31,41,…,10n+1 An=Bnが成り立つBnの最小値は31なので、 初項は31、公差は3×10=30 よって、{Cn}=31+(n-1)・30=30n+1 ------------------------------- と解いてみたのですが、模範解答はもっと長く書いてありました。私の解き方ではダメなのでしょうか??または今回は偶然求められただけなのでしょうか? ちなみに、模範解答を読んでも意味がわからないので、どなたかわかりやすくまとめて頂けるとありがたいです。 ------------------------------- 【模範解答】 An=3n-2 Bn=10n+1 等差数列{An}の第p項と等差数列{Bn}の第q項が一致する。 すなわち、Ap=Bq。このとき、 3p-2=10q+1 …(1) 3(p-1)=10q これより、3と10は互いに素であるから、qは3の倍数となり、 q=3k (kは整数) …(2) とおける。 (2)を(1)に代入して、 3p-2=10×3k+1 p=10k+1 よって、 p=10k+1 q=3k p>0,q>0より,k>0であるから、 A(10k+1)=3×(10k+1)-2 =30k+1 したがって、{Cn}=30n+1

  • 数列 共通項

    次の2つの数列の共通項の個数とその和を求めよ。 数列: 1, 4, 7, 10・・・・・100 (anとする) 数列: 5, 10, 15, 20・・・100 (bnとする) 一般項an=3n-2 一般項bn=5n am=bn 3m-2=5n 3m-2=5n 3(m+1)=5(n+1) 3,5共に素数より、m+1=5k (kは自然数) m=5k-1 am=a5k-1=3(5k-1)-2=15k-5 ・・・共通項の数列 ※個数と数列の和はわかるので省きます。 (m+1),(n+1)と置く理由、kと置いてmに代入する理由がわかりません。

  • 数列{an}、{bn}の共通項から数列作成問題

    よろしくお願いします。 an=8n-2 bn=6n+2 とする。 数列{an}と{bn}に共通して現れる数を小さい順に並べて新しい数列{cn} を作る時、cnの初項と公差を求めよ。 という問題で anの第m項と、bnの第n項が等しくなるから、 8m-4=6n+2 ⇔2(2m-1)=3n これより2と3は互いに素だからn=2k と表せられる。 よってbnのnに2kを代入して、 cn=b2k=6(2k)+2=12k+2 ゆえにcn=12n+2 と解きましたが間違っておりました。 解答では、 an=8n-2=8(n-2)+14 bn=6n+2=6(n-2)+14 と変形できる。am=bnとすると8(m-2)+14=6(n-2)+14 よって 4(m-2)=3(n-2), m≧2、 n≧2 4と3は互いに素だから、kを自然数として m-2=3(k-1) よってm=3k-1からcnはanの第3k-1項であり、 8(3k-1)-2=24k-10=14+(k-1)*24 したがって初項14、公差24である。 と解いてありました。 私の解答のどこがいけないのか、解答は一体何をやっているのか を教えて下さい。 よろしくお願いします。

  • 2つの数列の共通項の和

    次の問題が分かりません。解説をお願いいたします。 an=n^2である数列{an}と bn=3n-2である数列{bn}の いずれにも含まれる項を小さいものから並べた数列を{cn}とする。 Nを自然数とするとき、数列{cn}の初項から第2N項までの和を求めよ。 ご回答よろしくお願いいたします。 (cnが、3の倍数でない自然数の二乗の項であるということは分かったのですが、それをどのように式にすればいいかが分かりません。)

  • 文字式を各項にとる数列の一般項

     初めまして、暇つぶしに数学の考えごとをしていると、分からないことがありましたので、質問させていただきます。数(?)列についてなのですが、知識は高校数学程度しかなく、しかも数列の分野はかなり忘れ気味です。高校数学に毛の生えた程度の内容ではとても説明できないという場合、高度な解説をしていただいても馬の耳に念仏ということになってしまいますので、その場合はあまり詳しく説明していただかなくても結構です。  {A(n)}=n^x  という文字の入った数列を考えます。この第1階、第2階、第3階……の階差数列を考えてゆきます。階差数列をダッシュをつけて表現しますと、具体的には、  {A'(n)}=A(n+1) - A(n)=(n+1)^x - n^x  {A''(n)}=(n+2)^x - 2(n+1)^x + n^x  {A'''(n)}=(n+3)^x - 3(n+2)^x + 3(n+1)^x - n^x  ……  ということになります。この一般の場合を考えたいのです。考え方として、{A(n)}、{A'(n)}、{A''(n)}、……の一般項を順番にならべた数列{B(m)}を考えて、その一般項を求めたいのだ、ということにもなります。  {B(1)}=n^x  {B(2)}=(n+1)^x - n^x  {B(3)}=(n+2)^x - 2(n+1)^x + n^x  ……  {B(m)}=???  ということです。まあ、式の形からいって、一般項はきっと  {B(m)}=Σ[k=1,m] {(-1)^(k+1)} * [m!/{k!(m-k)!}] * {(n+k-1)^x}  という形になるんだろうな、と想像はつきますが(m!/{k!(m-k)!} はパスカルの三角形の一般項)、どうしてそうなるのか分かりません。ご教示いただきたいです。 (あと、ついでの話になりますが、{B(m)}の第~階差数列を同様に考えて、同様に各一般項から数列{C(l)}とかも作れそうですね。その一般項を考えて……とやってると、終わりがなさそうです)  高校数学で簡単にできることをド忘れしてやしないか、不安でヒヤヒヤしますが……。

  • 数列

    連続で投稿してしまうことをお許しください 2の倍数でも3の倍数でもない自然数全体を小さい順に並べてできる数列を a_1,a_2,a_3,・・・・・,a_n,・・・とする (1)a_100をもとめる (2)1003は数列{a_n}の第何項か? (3)mを自然数とするとき数列{a_n}の初項から第2m項までの和を求めよ。 (1)a_100=300かしら?適当にやったらうまくいった? (2)1003-500-334-167=169 169項?(n(2)=500,n(3)=334,n(6)=167) (3)1から2mまでの和から2の倍数の和を引いて、3の倍数の和を引いて6の倍数の和を足す。 2の倍数や3の倍数、6の倍数のシグマの計算式が立てられない。 mが3kのとき、3k+1のとき、3k+2のときで場合分け?

  • 数列の問題です。

    1. n    1 Σ ────── を求めよ。 k=1 k(k+1)(k+2) 2.次の和を求めよ。  1      1      1          1 ─── + ─── + ─── + …… + ──── 2^2-1   4^2-1    6^2-1       (2n)^2-1 3.数列{a_n}について、第n+1項と第n項の差b_n=a_(n+1) - a_nを階差といい、階差によって決められる数列{b_n}を数列{a_n}の階差数列という。           n-1  (1)a_n=a_1+ Σ b_k となることを証明せよ。           k=1 (2)次の数列{a_n}の階差数列{b_n}を求め、a_nをnの式で表せ 1,2,4,7,11,… ワケガわかんなくなってきました・・・ よろしくお願いいたします。

  • 高2の数学で数列がわかりません

    数学の問題です。 数列2/3,2/5.4/5,2/7,4/7,6/7,2/9,4/9,6/9,8/9,2/11・・・・・において (1)4/15はこの数列の第何項か。 (2)この数列の第100項の数は何か。 a1=4,an+1=3an+2^3(n=1,2,3,・・・・)で定めらた数列 {an}の一般項を求めよ。 次の数列の和を求めよ。 (1)1・n+2・(n-1)+3・(n-2)+・・・・・+n・1 (2)7+77+777+7777+・・・・・・+777・・・77 777+77はn個とする 次の和を求めよ。 (1)n Σ1/(2k-1)(2k+1) k=1 (2)n Σ1/k(k+1)(k+2) k=1 a1=5,an+1=2an-3n+4(n-1,2,3,・・・・・・)で定められた数列{an}の一般項を求めよ。 a1=1,a2=1,an+2-an+1-2an=0(n=1,2,3,・・・・・)で定められた数列{an}の一般項を求めよ。 数列{an}の初項から第n項までの和Snが3Sn=4an-3N-1(n=1,2,3,・・・・・)を満たすとき (1)初項a1を求めよ。 (2)一般項anおよび和Snを求めよ。 数列11,1001,100001,10000001,・・・・・について (1)この数列の一般項anを求めよ。 (2)この数列の項はすべて11の倍数であることを証明せよ。 宿題ですが数列が全くわかりません。どうかお願いいたします。

  • 数列91[B]

    数列91[B] 数列{a(n)}を次の式 a(1)=1,a(2)=3,a(n+2)+a(n+1)-6a(n)=0(n=1,2,3,・・・) で定める。また、α、βを a(n+2)-αa(n+1)=β(a(n+1)-αa(n))(n=1,2,3,・・・) を満たす実数とする。ただし、α<βとする。次の問いに答えよ。 (1)a(3),a(4)を求めよ。 (2)α,βを求めよ。 (3)n=1,2,3,・・・に対しb(n)=a(n+1)-αa(n)とおくとき、数列{b(n)}の一般項を求めよ。 (4)n=1,2,3,・・・に対しc(n)=a(n+1)-βa(n)とおくとき、数列{c(n)}は等比数列である。数列{c(n)}の公比と一般項を求めよ。 (5)数列{a(n)}の一般項を求めよ。

  • トリボナッチ数列の一般項の求め方について

    トリボナッチ数列のn番目の項をT(n)と表記することにします。 T(n+3)=T(n)+T(n+1)+T(n+2)…(1) T(1)=T(2)=T(3)=1とします。 x^3=x^2+x+1の解をA,B,Cとすると、解と係数の関係から A+B+C=1 AB+BC+CA=-1 ABC=1 (1)からT(n+3)=(A+B+C)T(n+2)-(AB+BC+CA)T(n+1)+ABCT(n)…(2) (2)からT(n+3)-(B+C)T(n+2)+BCT(n+1)=A{T(n+2)-(B+C)T(n+1)+BCT(n)} よってT(n+3)-(B+C)T(n+2)+BCT(n+1)=A^n{T(3)-(B+C)T(2)+BCT(1)} =A^n(1-B-C+BC)=A^n(A+1/A) これは(A、B、C)を(B、C、A)、(C、A、B)に置き換えても成り立ち それぞれの式をI、II、IIIとします。I+II+IIIを求めると 3T(n+3)-2T(n+2)-T(n+1)=A^n(A+1/A)+B^n(B+1/B)+C^n(C+1/C) このnに0~n-2まで代入して和をとると 3T(n+1)+T(n)-3T(2)-T(1)=Σ[0~n-2]{A^n(A+1/A)+B^n(B+1/B)+C^n(C1/C)} 右辺は項比がAかBかCの等比数列とみて計算できます。 こうしてT(n+1)=aT(n)+(定数)+(nを指数にもつ式) の形に表せるのですが、この式から一般項を求める方法がわかりません。 I、II、IIIを連立する方法もありますがこの式からはもとめられないのでしょうか? どなたか教えてくださるとありがたいです。