微分不可能な関数f(x,y)=√|xy|が原点で微分不可能であることの証明

このQ&Aのポイント
  • f(x,y)=√|xy|が原点で微分不可能であることを示すために、極座標変換を使用して全微分可能の定義を導く。
  • 全微分可能の定義を代入し、極限値を計算すると、√|cosθsinθ|がθに左右されることが分かり、極限値が存在しないため、f(x,y)=√|xy|は原点で微分不可能である。
  • これにより、f(x,y)=√|xy|が原点で微分不可能であることが証明された。
回答を見る
  • ベストアンサー

f(x,y)=√|xy|が原点で微分不可能と示す

お世話になります、以下の問題を解くにあたって極座標変換を使いたいのですが、その用法に自信がありません。 お手数をお掛けいたしますが、添削をお願いしたいのです。 >>f(x,y)の点(a,b)での全微分可能の定義 lim[(h,k)→0] {f(a+h,b+k)-f(a,b)-(Ah+Bk)}/√(h^2+k^2) =0より f(x,y)=√|xy|が原点で微分不可能であることを示したいのです。 k=0の時、定義はlim[h→0] {f(a+h,b)-f(a,b)-Ah} / h =0 lim[h→0] {f(a+h,b)-f(a,b) } / h =Ah/h 左辺がx座標の偏微分係数になっているので、fx(a,b)=A 同様にh=0のとき、fy(a,b)=B ∴定義はlim[(h,k)→0] {f(a+h,b+k)-f(a,b)-( fx(a,b)h+ fy(a,b)k)}/√(h^2+k^2) =0 a=0,b=0として、 f(0,0)=0 , f(0+h,0+k)= √|hk| f(x,y)=√|xy|の原点での偏部分係数は fx(0,0)= lim[h→0] {f(0+h,0)-f(0,0)} / h = lim[h→0] 0/h =0 fy(0,0)= lim[k→0] {f(0,0+k)-f(0,0)} / k = lim[k→0] 0/k =0 これらを定義に代入して、 lim[(h,k)→0] √|hk|/√(h^2+k^2)…(※) が0に収束するかについて 点(0,0) と点(0+h,0+k)を結ぶ直線をrとして、点(0,0)と点(0+h,0)を結ぶ直線とrのなす角をθとする。 cosθ=h/rよりh=rcosθ , sinθ=k/rよりk=rsinθ (ただし、r>0 ,0≦θ≦π/2 , (h,k)→0 ⇒ r→0) (※)に代入して、lim[r→0] √|r^2cosθsinθ|/√{r^2(cos^2θ+sin^2θ)} , r>0より lim[r→0] √(r^2| cosθsinθ|) / √r^2 = lim[r→0] (r√| cosθsinθ| )/ r = lim[r→0] √| cosθsinθ|= √| cosθsinθ| ∴ 極限値はθに左右される。つまり全微分不可能である。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

いいんじゃない? 語り口はモタついているけれど、 内容に間違いは見られない。 正解。

izayoi168
質問者

お礼

iいつもお世話になります、alice_44さん。 添削ありがとう御座います。

その他の回答 (1)

  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

(x,y)=(0,0)で全微分不可能であることを示すには、 (x,y)→(0,0)への全ての方向微分係数が一致しない、つまり、最低2つの異なる方向微分係数の存在を示せばよい。 x=y=t,t→+0とした時の方向微分係数は √|xy|=tなので lim(t->+0)(t)'=1 …(1) x=y=t,t→-0とした時の方向微分係数は √|xy|=-tなので lim(t->+0)(-t)'=-1 …(2) (1)と(2)が異なる。ゆえに全微分不可能である。 なお、他の方向微分係数として y=0としてx→0とした時の方向微分係数は √|xy|=0なので lim(x->0)(0)'=0 …(3) と(1),(2)とも異なる方向微分係数が存在すると示すこともできる。 また、y=2xとしてy→+0とした時の方向微分係数は √|xy|=(√2)xなので lim(x->0)(x√2)'=√2 …(4) と(1),(2),(3)とも異なる方向微分係数が存在すると示すこともできる。

izayoi168
質問者

お礼

>>方向微分係数の存在を示せばよい。 すごくシンプルに微分不可能を示すことができるんですね、全微分の定義に代入する形にこだわりすぎました。 ご指導、ありがとう御座います!

関連するQ&A

  • 全微分可能性の問題です。(再考しました)

    回答者の皆様にはいつもお世話になります。 以下の全微分の問題ですが、全微分可能性の厳密な理解が私自身できていない気がします。 お知恵をお貸しください。 問題:f(x,y)が点(a,b)で全微分可能である事の定義を示し、それを利用してf(x,y)=√(1-x^2-y^2)の原点での微分可能性を証明せよ。 f(x,y)がxとyについて偏微分可能である。(fx,fyと表現します) f(x,y)を点(a,b)の周りで一次近似する最良の平面はf(a,b)+fx(a,b)(x-a)+fy(a,b)(y-b)であり、その誤差εはf(x,y)-{f(a,b)+fx(a,b)(x-a)+fy(a,b)(y-b)}となる。 (x,y)→(a,b)の時、この誤差εがベクトル((x-a),(y-b))の絶対値√((x-a)^2+(y-b)^2)より先に0になれば微分可能なので、lim[(x,y)→(a,b)] [f(x,y)-{f(a,b)+fx(a,b)(x-a)+fy(a,b)(y-b)}] / √((x-a)^2+(y-b)^2)=0がf(x,y)の点(a,b)における全微分可能の定義となる。 f(x,y)=√(1-x^2-y^2)のとき、f(0,0)=1 fx(x,y)=-2x・{1/2√(1-x^2-y^2)}より、fx(0,0)=0 fy(x,y)=-2y・{1/2√(1-x^2-y^2)}より、fy(0,0)=0 ∴ε=√(1-x^2-y^2)-1-{0・(x-0)+0・(y-0)}=√(1-x^2-y^2)-1 又ベクトル(x-0,y-0)の絶対値は√(x^2+y^2) 以上より、lim[(x,y)→(0,0)] {√(1-x^2-y^2)-1}/√(x^2+y^2)=0の時、全微分可能 極座標で考えると、(x,y)→(0,0)の時、r→0であり、x=r・cosθ,y=r・sinθ、 代入してlim[r→0] {√(1-r^2)-1}/r、分子を有理化して、 lim[r→0] -r^2/{r√(1-r^2)+1}=lim[r→0] -r/{√(1-r^2)+1}=-0/2=0 つまり全微分可能である。 というアプローチで如何でしょうか? ご指導願います。

  • 継続・困っています…orz(全微分:再考)

    前回の書き込みで皆様に頂いたご指摘を元に定義の導出を考えてみました。 稚拙なものですが、アドバイスをいただきたく思います。 お手数をお掛けいたします。 >>全微分可能の定義を述べよ >>関数f(x,y)の定義域内で点(a,b)から点(a+h,b+k)に移動した場合を考える。 f(a+h,b+k)を近似する二変数多項式が存在するならば、 h,kを変数、A,Bを定数として、f(a,b)+Ah+bkと表すことができる。 f(a+h,b+k)をf(a,b)+Ah+bkで近似した際の誤差を関数ε(h,k)で示すと、 f(a+h,b+k)=f(a,b)+Ah+bk+ε(h,k)と表現できる。 近似誤差に着目すると、 ε(h,k)=f(a+h,b+k)-f(a,b)-(Ah+bk)…(1) 微分可能であるためには(a,b)と(a+h,b+k)の 2点間の距離√(h^2+k^2)が0に近づくにつれて近似誤差ε(h,k)が0に近づけば良い。 ただし、近似誤差ε(h,k)より先に2点間の距離√(h^2+k^2)が0になる場合、 ε(h,k)が0に十分近くならないことがあり、誤差が無視できなくなる。 つまり、2点間の距離√(h^2+k^2)より先に近似誤差ε(h,k)が0に近づく必要がある。 式で表すと lim[(h,k)→0] ε(h,k)/√(h^2+k^2) =0…(2) (距離√(h^2+k^2)より先に誤差ε(h,k)が0に近づくと0になり、逆の場合は∞になる) (2)に(1)を代入してlim[(h,k)→0] {f(a+h,b+k)-f(a,b)-(Ah+bk)}/√(h^2+k^2) =0 この式が成り立つ場合、全微分可能と言える。 又、{f(a+h,b+k)-f(a,b)-(Ah+bk)}/√(h^2+k^2)=εと表現した時、 f(a+h,b+k)-f(a,b)-(Ah+bk)=ε√(h^2+k^2) f(a+h,b+k)-f(a,b)=Ah+bk+ε√(h^2+k^2)かつlim[(h,k)→0] ε = 0となる。

  • 関数f(x)の連続性と微分可能性に関する問題です。

    aを実数とする。次で定義される関数f(x)の連続性と微分可能性を調べよ。 x≦0のときf(x)=0、x>0のときf(x)=x^a*sin1/x という問題について、解いている途中で混乱が生じました。 x≠0のときf(x)は連続かつ微分可能だから、x=0におけるふるまいを調べる。 x>0のとき、f'(x)=a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/xであり、x<0のときf'(x)=0 (i)右からの極限 -1≦sin1/x≦1だから、-x^a≦x^a*sin1/x≦x^a はさみうちの原理より、lim【x→+0】(-x^a)≦lim【x→+0】f(x)≦lim【x→+0】x^a a>0ならばlim【x→+0】f(x)=0 a=0のときはlim【x→+0】f(x)=1 a<0のときはlim【x→+0】f(x)は発散。 よってa>0のとき連続。a≦0のとき不連続。(答) 次に微分可能性を調べる。 (ii)右からの極限 lim【x→+0】f'(x)=lim【x→+0】{a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/x} (i)と同様に考えるとlim【x→+0】a*x^(a-1)*sin(1/x)はa>1のとき0。a=0のときも0。 a=1のときsin∞となり発散で微分不可能。a<1のときも発散で微分不可能。 ゆえにa>1またはa=0に限定してlim【x→+0】f'(x)の極限を調べる。 このときlim【x→+0】f'(x)=lim【x→+0】{-x^(a-2)*cos1/x} -1≦cos1/x≦1であり、同様にはさみうちの原理からlim【x→+0】f'(x)はa>2ならばlim【x→+0】f'(x)=0で微分可能。a<2ならば微分不可能。(答) 問題集には、a>1のとき微分可能。a≦1のとき微分不可能と書いてあります。私の解き方のいけない点を教えてください。

  • 二変数関数微分

    極座標変換をしてからx=rcosθ,y=rsinθにすれば わかりやすいときいたんですが ちょっと分からない問題がいくつかあるので アドバイスお願いします。 (1)極限が存在するかどうか調べよ lim((x,y)→(0,0)) xylog(x^2+y^2) (2)原点における連続性、偏微分可能性、微分可能性を求めよ。 f(x,y)=xysin(1/√(x^2+y^2))・・・((x,y)≠(0,0))     0・・・((x,y)=(0,0)) です。1は極座標でやってみたのですが log rが残ってr→0にするとその部分が どうなるのかわからなくなってしまいました。 2は微分可能の定義より f(a+h,b+k)=f(a,b)+fx(a,b)h+fy(a,b)k+α√(h^2+k^2) で f(x+a,y+b)=√(1-a^2-b^2)-ax/√(1-a^2-b^2)-bx/√(1-a^2-b^2)+α√(a^2+b^2) よりαが存在するから微分可能。 よって連続、偏微分も可能である。 という解答でいいのでしょうか? 自分的にはちょっと違うような気もするので教えて下さい。

  • 指数やLogが含まれる2変数関数 f(x,y)の偏微分について

    こちらの皆様のおかげで、2変数関数 f(x,y)の偏微分の解き方が ようやく理解できました。大変ありがとうございました。 それで、追加の質問で申し訳ないのですが、 以下の解き方があっているか、ご指導のほど、よろしくお願いします。 【問題】 次の2変数関数f(x,y)を偏微分せよ。 すなわち、関数f(x,y)のxおよびy関する変動関数fx(x,y)およびfy(x,y)を求めよ。 (5) Log √(x^2+y^2+1) 先に質問をした回答より、 fx(x,y)(x^2+y^2+1)=x/√(x^2+y^2+1) fy(x,y)(x^2+y^2+1)=y/√(x^2+y^2+1) また、(Log x)\'=1/xの公式と合わせて, Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/x Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/y (6) e^(xy) fx(x,y)=e^(xy) fy(x,y)=e^(xy) (7) sin xy fx(x,y)=cos xy = y * cos x fy(x,y)=cos yx = x * cos y (8) e^x * sin y fx(x,y)=e^x * sin y fy(x,y)=e^x * cos y (9) x^2 cos xy 積の微分の公式 より、 fx(x,y)=2x * cos xy + x^2(-sin xy) = 2x cos xy -x^2 sin xy fy(x,y)=x^2 * ( -sin xy) = -x^2 sin xy 以上、適用する公式などにおかしいところがあれば、 ご指導お願いします。

  • 指数やLogが含まれる2変数関数 f(x,y)の偏微分について

    こちらの皆様のおかげで、2変数関数 f(x,y)の偏微分の解き方が ようやく理解できました。大変ありがとうございました。 それで、追加の質問で申し訳ないのですが、 以下の解き方があっているか、ご指導のほど、よろしくお願いします。 【問題】 次の2変数関数f(x,y)を偏微分せよ。 すなわち、関数f(x,y)のxおよびy関する変動関数fx(x,y)およびfy(x,y)を求めよ。 (5) Log √(x^2+y^2+1) 先に質問をした回答より、 fx(x,y)(x^2+y^2+1)=x/√(x^2+y^2+1) fy(x,y)(x^2+y^2+1)=y/√(x^2+y^2+1) また、(Log x)'=1/xの公式と合わせて, Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/x Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/y (6) e^(xy) fx(x,y)=e^(xy) fy(x,y)=e^(xy) (7) sin xy fx(x,y)=cos xy = y * cos x fy(x,y)=cos yx = x * cos y (8) e^x * sin y fx(x,y)=e^x * sin y fy(x,y)=e^x * cos y (9) x^2 cos xy 積の微分の公式 より、 fx(x,y)=2x * cos xy + x^2(-sin xy) = 2x cos xy -x^2 sin xy fy(x,y)=x^2 * ( -sin xy) = -x^2 sin xy 以上、適用する公式などにおかしいところがあれば、 ご指導お願いします。

  • 微分式

    下記の式の微分をお願いします。可能なら手法も。 fx(θ)=R*θ*COS(A)*SIN(θ+A) 及び fy(θ)=R*θ*COS(A)*COS(θ+A) R,Aは定数

  • y=x^2やz=x^2+y^3の微分は何になる?

    よろしくお願い致します。 『Rを実数体とする。距離空間X:=Π[i=0,n]R,Y:=Π[i=0,m]Rに於いて、 T:={A∈2^(X);A={(x1,x2,…,xn);∃ci,di∈R such that ci<xi<di}}とし、 a∈Xに於いて、map f:nbhd(a,(X,T))→Y (nbhd(a,(X,T))はaの位相空間(X,T)に於ける近傍系)に於いて、「fはaで微分可能である」』 の定義を 『B:={R上の線形写像g:X→Y ; [0<∀ε∈R,0<∃δ∈R such that (h∈{k∈X;0<k<δ且つa+k∈nbhd(a,(X,T))})}ならば|f(a+h)-f(a)-g(h)|/|h|<ε]}≠φ とし、fはaで微分可能であるという 又この時、Bは単集合となり、(df)aと表記し、「fのa∈nbhd(a,(X,T))に於ける微分」という』 というのが微分の定義だと思います。 つまり、微分とは線形写像の事である。 そうしますとy=x^2のx=aでの微分(df)aや z=x^2+y^3の(x,y)=(a1,a2)での微分(df)(a1,a2)はどのように書けるのでしょうか?

  • 2変数関数の可微分性

    2変数関数の可微分性 2変数関数f(x,y)が点(a,b)の近傍においてf(x,y)が0ではなく、かつ(a.b)で可微分、すなわちf(a+h,b+k)=f(a,b)+Ah+Bk+R(a,b,h,k) lim(h,k)→(0,0) R(a,b,h,k)/(h^2+k^2)^1/2=0であるとき、1/f(x,y)も(a,b)で可微分であることを示せ。 というものなのですが・・・ hの係数とkの係数を定めること、とヒントにはあるのですが、全然分かりません・・・ ご回答どうぞよろしくお願いいたしますm(_ _)m

  • 2変数関数の可微分性

    2変数関数の可微分性 2変数関数f(x,y)が点(a,b)の近傍においてf(x,y)が0ではなく、かつ(a.b)で可微分、すなわちf(a+h,b+k)=f(a,b)+Ah+Bk+R(a,b,h,k) lim(h,k)→(0,0) R(a,b,h,k)/(h^2+k^2)^1/2=0であるとき、1/f(x,y)も(a,b)で可微分であることを示せ。 というものなのですが・・・ hの係数とkの係数を定めること、とヒントにはあるのですが、全然分かりません・・・ ご回答どうぞよろしくお願いいたしますm(_ _)m