• ベストアンサー

可算無限についてお願いします

集合Xが有限集合の時、 ∪{Xの、要素数kの部分集合を全て集めた集合}  (k=0,1,2…|X|) は、Xのべき集合(2^X)と同じものですよね。 でも集合Xが有限集合ではなく、自然数の集合Nであった場合、 ∪{Nの、要素数kの部分集合を全て集めた集合}  (k=0,1,2…) は可算無限であり、Nのべき集合(2^N)は非可算無限だと聞きましたが、 その違いはいったいなぜ起こるのですか? ※ 集合Y(≠∅ )に対し f:Y→2^Y となる全射が存在しないので、X=Nとすることで2^Nが非可算である事は理解しています。

質問者が選んだベストアンサー

  • ベストアンサー
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.2

>しかし、その前者が{2,3,4・・・}という要素を本当に持たないのか気になります。 ∪{Nの、要素数kの部分集合を全て集めた集合}  (k=0,1,2…) という定義から明らかでは? A=∪{Nの、要素数kの部分集合を全て集めた集合}  (k=0,1,2…) とすると Aは,Nの無限部分集合を要素として持たない. それらしく書けば,Aの任意の要素Xをとると XはAの定義により,ある自然数kが存在し, {Nの、要素数kの部分集合を全て集めた集合} の要素となる.つまり,Xは要素数kのNの部分集合. 決して,k=0,1,2,...としたって,和集合に 「k=∞」のときが含まれるわけではないのです.

yukihiro_3
質問者

お礼

>決して,k=0,1,2,...としたって,和集合に >「k=∞」のときが含まれるわけではないのです. なるほど、やはりこの定義では含めないのですね~。 ありがとうございました!

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

下のやつは「2以上の整数の集合」を要素に持たないのでは?

yukihiro_3
質問者

お礼

{2,3,4・・・}という集合の要素を ∪{Nの、要素数kの部分集合を全て集めた集合} (k=0,1,2…) は持たず、2^Nは持つので、そこの差で前者が可算、後者が非可算となるということですね! しかし、その前者が{2,3,4・・・}という要素を本当に持たないのか気になります。 そこの証明があれば嬉しいのですが・・・

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 可算無限集合と非可算無限集合の違いが分かりません。

    例えば、こういう問題のときそれぞれ可算無限集合と非可算無限集合のうちどっちですか? (1)0≦x≦1を満たす実数x (2)任意の自然数N (3)任意の実数R 回答よろしくお願いします。

  • 可算かどうか

    「XをN(自然数の集合)の有限部分集合全体の集合とするとき、|X|=アレフゼロ(可算濃度)となることを証明せよ」 を教えてください。 自然数Nと一対一対応もしくは、先頭から番号をつけていくことができるというような証明の仕方ではないのかなとは思うのですが、具体的な証明方法が思いつきません、教えてください。 よろしくお願いいたします。

  • 可算濃度2

    Xを自然数全体集合Nの有限部分集合全体とするとき、|X|と可算濃度が同じである証明の仕方を、分かりやすく教えて下さい!

  • 無限順列に対して無限組合せを考えると

    Aを要素が3つの有限集合{x,y,z}とします。Nを自然数の集合{1,2,3,4,…}とします。 写像:A→Nを考えます。 これは幾何学的には空間N^3を表しています。 また、解析的には、項数が3の自然数の数列を表してます。 例えばピタゴラス数(x^2+y^2=z^2を満たす自然数x,y,z)を考えるといった実用性があります。 以上のことを、組合せで考えます。 例えばピタゴラス数では、x^2+y^2=z^2を満たす自然数x,y,zに、同じ組合せを同一視したり、x<y<z、もしくは、x≦y≦zといった制限を与えることになります。 これはごく普通の考えと思います。 次に、Nを自然数の集合{1,2,3,4,…}とします。Aを要素が3つの有限集合{0,1,2}とします。 写像:N→Aを考えます。 これは組合せ論的には、3つの要素を無限個並べた順列を表しています。 また、解析的には、各項が0,1,2の無限数列を表してます。 例えば0≦x≦1の実数xの3進法表示(ただし、0.210222…=0.211000…といったような同一視をする)を考えるといった実用性があります。 以上のことを、(重複)組合せで考えてみると、3種類の数字の数列に対して、イレカエをしても同じになる並べ方を同一視することになります。 統計学的には、無限個並べた3種類の数字の度数分布を考えることになります。 絵描きが無限の溝があるパレットに、3種類の絵の具からひとつずつ選び、一定量を出して並べていった後、かき混ぜたときの色を考えることになります。 これもまあ普通の考えと思うのですが、いわゆる「無限組合せ」は聞いたことありません。 なにか実用性はあるのでしょうか。数学の他の分野と関連はあるのでしょうか。 実数(√2)-1の3進法表示で、無限桁の数字0、1、2の「割合」はそれぞれ1/3、1/3、1/3なのでしょうか? 3種類の数字のなんらかの数列(無限順列)に対して、「無限組合せ」を考えたときに、何か面白いことはあるのでしょうか。

  • 2つの可算無限集合においてその直積は可算無限集合である

    2つの可算無限集合においてその直積は可算無限集合であるということ{f(i,j)=1/2(i+j-1)(i+j-2)+j}を数列、または格子を使って証明するにはどうしたらよいか教えてください。

  • 位相 可算集合

    Aを可算集合とする。このとき、次の条件(1)(2)(3)を満たすAの 部分集合族{A_n|n∈N}(Nは自然数とする)が存在することを証 明せよ。 (1)すべてのn∈NについてA_nは可算集合である。 (2)A=∪_n∈N(A_n) (3)n≠n'⇒A_n∩A_n'=Φ よくわかりません!! f:N×N→N の全単射とする。 A_n={f(n,m)|m∈N}とすればよい。 と使えばいい思っているんですが、どのようにしたら いいかわかりません!この先の解答を教えてください!! 経過もお願いします!!

  • 第2可算公理

    X,Yが第2可算性を持つ位相空間のとき、X×Yも第2可算性を持つことを示せ。 という問題です。 第2可算性を持つ⇔位相空間が可算集合からなる基を持つ で定義されています。 更に、 位相空間において、β⊂Oは、任意の開集合がβの要素の和集合で書けるとき、位相Oの基と言います。 証明の方針がいまいち分からないので、どなたかアドバイスもしくは証明をお願いします。

  • 無限集合に関することです。

    無限集合に関することです。 自然数全体を可算無限個の互いに交わらない集合A1,A2,A3・・・(どのAkも可算無限集合)の和として表わされることを示したいのですがどうすれば良いですか? 可算無限集合は自然数全体の集合との間に1対1対応の関係がある集合のことなのに、自然数全体を互いに交わらない集合で示せるのでしょうか?

  • 可能無限と実無限

    可能無限と実無限って何ですか? このカテゴリで合ってますか? 自然数全体という集合が存在すること関係ありますか? 集合の濃度と関係ありますか(可算無限の友達ですか)? 実数直線の両端にくっついてる「±∞」と関係ありますか? 無限大超実数(NSA)と関係ありますか? 数学科の大学生に教える感じで、お願いします。

  • 位相 可算集合

    この問題の解答と途中式をおしえてください!! できれば全解をお願いします。 何度してもできません!! Aを可算集合とする。このとき、次の条件(1)(2)(3)を満たすAの 部分集合族{A_n|n∈N}(Nは自然数とする)が存在することを証 明せよ。 (1)すべてのn∈NについてA_nは可算集合である。 (2)A=∪_n∈N(A_n) (3)n≠n'⇒A_n∩A_n'=Φ

このQ&Aのポイント
  • ファイル印刷待ちをすぐに消去する方法を教えてください。
  • Windows10でMFC-j907DMのファイル印刷待ちを解消する方法について教えてください。
  • 無線LAN接続のMFC-j907DMでファイル印刷待ちを消去する方法を教えてください。
回答を見る