• ベストアンサー

常微分方程式の問題です。

常微分方程式の問題です。 x^2dy/dx+xy・log(底e)(y)+y=0・・・・・・(1) の一般解を求めよ。 という問題で、自分で解いたのですが合っているかがわからないので お願いします。 両辺をxyで割って、 xy・dy/dx+log(y)+1/x=0・・・・・・(2) ↑y・log(y)とyが出てくると、不都合に感じたため。不必要?? xy・dy/dx+log(y)=-1/x・・・・・・(3) xy・dy/dx+log(y)=0 を解くと、 log(y)=c/x (c:積分定数)・・・・・・(4) 定数変化法を用いて、 y'/y=(c'x-c)/x^2 (3)に代入して、 c'=-1/x よって、c(x)=-log(x)+c (4)に代入して、 log(y)=(-log(x)+c)/x となったのですが、これでいいのでしょか。 また、解答の形としては上の形のまま答えてダイジョブでしょうか。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

>log(y)=(-log(x)+c)/x >となったのですが、これでいいのでしょか。 y={x^(-1/x)}e^(c/x) とした方が言いかと思います。

and1_wb
質問者

お礼

回答ありがとうございます。 やはり、y= の形にしたほうがいいですね。

その他の回答 (3)

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.4

何故だか、答えは正しいのだけれど、 そもそも (1)→(2) の変形が間違っているので、 その後、何がどうなって正解が出てきたのか は、謎です。 (1) を正しく xy で割ると、 x(y'/y) + log y = -1/x になります。 左辺 = (x log y)' ですから、 後は積分できるでしょう。

and1_wb
質問者

お礼

回答ありがとうございます。 >そもそも (1)→(2) の変形が間違っているので、 すいません。 打ち間違いです・・・・・・ 答えはあっているということなので、良かったです。 ありがとうございました。

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.3

#1 が指摘しているのは 「x^2 を xy で割って xy になるの?」 ってことではないかと.

and1_wb
質問者

お礼

指摘ありがとうございます。 そのようです。打ち間違えているのに気付かず、質問してしまいました。 本当にすいません。

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

とりあえず、(2) の変形が違う。

and1_wb
質問者

補足

回答ありがとうございます。 >とりあえず、(2) の変形が違う。 どう違うのでしょうか。確かに変形に違和感があるのですが 普通に変形をせずに積分するやりかたがわからなかったので、 あのようにしたのですが・・・・・・ やり方を教えていただけるとありがたいです。 よろしくお願いします。

関連するQ&A

  • 簡単な微分方程式

    簡単な微分方程式なのですか、 dy/dx = xy がy=C e^(x^2/2)となる理由が分かりません。 解説には、(1/y)(dy/dx) = x と、移行してからxで積分するとこの形になるとあるのですが、それなら log|y| = x^2/2 + c です。コレの両辺からlogを取っても |y| = e^(x^2/2) + e^c です。ここからどうやればいいのでしょうか?

  • 微分方程式の問題

    y^2dx+(xy-1)dy=0  解 xy=logy+c の解き方なのですが、同次形で解いていったところ . y=xv (dy/dx=v+xdv/dx)とする。  y^2dx+(xy-1)dy=0 ⇔y^2+(xy-1)dy/dx=0  ←両辺にdxをかける ⇔(y/x)^2+(y/x-1/x^2)dy/dx=0 ←両辺に1/x^2をかける ⇔v^2+(v-1/x^2)(v+xdv/dx)=0  ←y=xv,dy/dxを代入 ここからxとvについてうまくまとめられません。 どなたか教えてください。

  • 偏微分方程式

    x^2 (∂z/∂x) + (x^4-xy) (∂z/∂y) = xz + y この問題が解けなくて困っています。 dx/(x^2) = dy/(x^4-xy) = dz/(xz+y) として、 dy/dx = (x^4-xy)/(x^2) = x^2-(y/x) dy/dx + y/x = x^2 に一階線形常微分方程式の公式を適用して、 y = (1/4)x^3 + C(1)(1/x) (C(1)は積分定数) まで解いたのですが、そもそもここまで合ってるかどうかさえ分かりません。 解き方を教えてください。 自分で確認したいので検算の方法もよろしければお願いします。

  • 微分方程式

    y'=1-(y/x)をときたいのですが、 dy/dx=1-(y/x) dy/y=dx/y -dx/x 両辺を積分して log|y|=x/y-log|x| +C y=e^(x/y) /x xy=e^(x/y) となったのですが、解答には y=x/2 -4/xとなっています。 間違いを指摘してもらえますか?

  • 微分積分について

    微分積分初心者です。 dy/dx=5という微分方程式があって、これの両辺をxで積分すると ∫dy/dx・dx=∫5dx y=5x + C(Cは積分定数)というのはわかるのですが、 dxを右辺に持って行って、 dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで 積分ということになるのでしょうか? こういうことは可能なのでしょうか? また一階微分の時は右辺にdxを持っていくことができますが、 二階微分以上ではできないのはなぜでしょうか? よろしくお願い致します。

  • 微分方程式の途中の変形が分かりません。

    変数分離形の微分方程式 (x^2*y-x^2)dy=(x*y^2+y^2)dx を解くのですが、 ∫(1/y-1/y^2)dy=∫(1/x-1/x^2)dx と変形し、 log|y|+1/y=log|x|-1/x+C (C:積分定数) まで、解きました。 これはy=○○の形にどうやって変形すればよいのでしょう? 何を使うなどのヒントでいいので、よろしくお願いします。

  • 常微分方程式です

    dy/dx=x^2+y^2/xy の微分方程式をy=uxとおいて求めたんですけど u+xdu/dx=1+u^2/u-u =1/u ∫u du=∫1/x dx u^2/2=log|x|+C C=u^2/2-log|x| =y^2/2x^2-log|x| になったんですがこれであってますか?

  • 同次形微分方程式

    下の“微分方程式を解け”という問題がわかりません。 (1) (x+y)+(x-y)(dy/dx)=0 (2) xy(dy/dx)=x^2+y^2 この2つなんですが、一応、同次形微分方程式の範囲なので y/xの形にしてみたんですが・・・ (1) (x-y)(dy/dx)=-(x+y) (dy/dx)=-(x+y)/(x-y) 右辺の分母分子をxで割る (dy/dx)=-(1+y/x)/(1-y/x) y/x=uとおくとy=xuよって(dy/dx)=u+x(du/dx) よって u+x(du/dx)=-(1+u)/(1-u) x(du/dx)=-(1+u)/(1-u) -u x(du/dx)=-(1+u^2)/(1-u) (1-u)du/(1+u^2)=(1/x)dx 両辺を積分というとこの左辺のせきぶんがわかりません。 というかここまでまちがってるかもしれません。 (2) (dy/dx)xy=x^2+y^2 両辺をx^2でわる。 (dy/dx)(y/x)=1+(y/x)^2 y/x=uとおくとy=xuよって(dy/dx)=u+x(du/dx)よって u+x(du/dx)=(1+u^2)/u x(du/dx)=(1+u^2)/u -u x(du/dx)=(1/u) udu=(1/x)dx  両辺を積分 (1/2)u^2=logx+C よって(1/2)(y/x)^2=logx+C y^2=2x^2(logx+C) となり、とりあえず答えは合いました。過程はあってますか? あと、最終的な答えの形なんですがy=で答えるとかx=で答えるとか ってありますか?

  • 微分方程式

    6x-2y-7=(3x-y+4)y' という微分方程式を解いています. 模範解答では, 3x-y+4=uと置くと3-y'=u'であるから 2u-15=u(3-u') すなわち uu'/(u+15)=1 となる.ゆえに, u-15log|u+15=x+C1 (C1は積分定数) u=3x-y+4を代入して, 2x-y-15log|3x-y+19|=C. となっていました.自分は, X=x+α,Y=y+βと置き, y'=(6x-2y-7)/(3x-y+4)=(6X-2Y)/(3X-Y) となるようにα,βを決める. dy/dx=dY/dXであるから dY/dX=(6X-2Y)/(3X-Y)=2 となる ゆえにY=2X+C. X=x+α,Y=y+β を代入して (y+β)=2(x+α)+C. と考えたのですが,どこがおかしいのでしょうか?

  • 変数を置換える微分方程式について

    お世話になります、 以下の考え方で問題がないかご教授願います。 (どうして大学のテキストは解答がついてないのでしょうか、成否の確認ができません…) 問題:y´=y^2/(xy-x^2) 最初は変数分離で一瞬で解けると思ったのですが、分母がネックになりました。 右辺を1変数に置き換えられないか考えて、分子分母に1/(xy)を乗じます。 y^2/(xy-x^2)=(y/x)/(1-x/y) において、 z=(y/x)としてz^(-1)=(x/y),dz/dy=1/xよりdy=x dz ∴ z/(1-z^(-1))=(x・dz)/dx 両辺を逆数化して (1-z^(-1))/z=dx/(x・dz) ∫(1-z^(-1))/z dz=∫1/x dx    log|z|+z^(-1)+C=log|x| <Cは積分定数です> つまり、log x=log z+z^(-1)+C log x=log z+log e^z^(-1)+log e^C log x=log{ze^z^(-1)e^C} x=ze^z^(-1)C´ <e^C=C´とする> x=(y/x)e^(x/y)C´ 一応、微分は無くなったので正解となるのでしょうか? お世話になります。