• ベストアンサー

固有値・固有ベクトル

固有値・固有ベクトル 行列Aにおいて、ベクトルが1つ与えられ、それがAの固有ベクトルか否かを判定する方法が分かりません。 また、そのベクトルに対応する固有値を求める方法が分かりません。 逆に、数値が1つ与えられ、それがAの固有値か否かを判定する方法が分かりません。 行列Aが4×4以上になると、固有値・固有ベクトルを求めることが困難になります。 なので、「全ての固有値・固有ベクトルを形式に沿って求める解法」以外でお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • f272
  • ベストアンサー率46% (7995/17093)
回答No.2

> あるn次正方行列Aに対して、 > Ax = λx を満たす0でないn次元列ベクトルxと実数λが存在するとき、 > λをAの固有値と言って、xを固有ベクトルと言います。 (1)これでAとxが与えられていたとき,Ax = λxとなるλが存在するかどうかが分からない。 (2)また,Aとλが与えられていたとき,Ax = λxとなるxが存在するかどうかが分からない。 と言ってることになるんだけど... (1)は行列の掛け算が出来て,割り算が出来れば分かるでしょ。 (2)は行列式の計算が出来れば分かるよね。

reine1
質問者

お礼

なるほど、だから、定義より明らかな訳ですね。 気づきませんでした。ありがとうございます。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

とりあえず, 何よりもまず「固有値」や「固有ベクトル」の定義をきちんと理解し使えるようにしてください. 現状だと「求める」とかいう以前の問題です.

reine1
質問者

お礼

ありがとうございます。 固有値・固有ベクトルの定義は何度も確認したので理解出来ています。 あるn次正方行列Aに対して、 Ax = λx を満たす0でないn次元列ベクトルxと実数λが存在するとき、λをAの固有値と言って、xを固有ベクトルと言います。 図形的な意味は、行列Aによって、同一直線上に実数倍されるような特別な場合ということですよね。

関連するQ&A

  • 固有ベクトル求め方

    3×3行列 A= [ 7 2 2 ] [-6 -1 -6 ] [ 2 2 7 ] を対角化できるかどうか判定しなさい。 対角化できれば、対角化する行列P を1つ求めて、実際にP^(-1)AP を計算して対角化して下さい。 という問題の解法について、いまいちわからないことがあるので、質問します。 解法 まず固有値を求めます。 固有多項式は、Ψ(λ)=(λ-3)(λ-5)^2 で、λ=3、λ=5(重根)となります。 重根の場合、対角化できるか調べるために、 B=A-5Eとして、Bの階数(rank) を調べます。 B= [2 2 2] [-6 -6 -6] [2 2 2] となり、rank=1 よって、重根でも対角化できる、と結論づけて大丈夫なのででょうか? 別な判定方法として、最小多項式を求めて、これが重根ではなかったら「対角化できる」という判定方法があると思います。実際にこの問題の場合は、 (A-3E)(A-5E)=0となり、 最小多項式ψ(λ)=(λ-3)(λ-5)で重根を持ちません。 この判定方法は、前者の方法と「同値」なのでしょうか。同値であれば、その数学的理由を教えて下さい。 次に実際に固有ベクトルを求める過程での質問です。 λ=3についての固有ベクトルpは、 (A-3E)p=0 より [1] [-3] [1] と容易に求めることができます。 重根のλ=5に対する固有ベクトルの求め方について。 (A-5E)p=0 pの固有ベクトルの成分をxyzとします。 x+y+z=0となります。つまりrank=1となります。この式を満たす一次独立なベクトルを2つ見つけます。 x+y+z=0を満たす適当な数字を考えて x,y,z)=(1,1,-2)と(1,0,-1) としました。よってP= [1 1 1] [-3 1 0] [1 -2 -1] としました。そしたら、対角化できました。 しかし、一般的な解法(演習問題の解法)は、 x+y+z=0 より、x=-y-zなので、 s、tを媒介変数として、 x=-s-t y=s z=t より、 (x,y,z)=s(-1,1,0)+t(-1,0,1)と書けるので、 このλ=5に対する独立した固有ベクトルは、(-1,1,0)と(-1,0,1) である。 以上より、対角化する行列P= [1 -1 -1] [-3 1 0] [1 0 1 ] P^(-1)AP= [3 0 0] [0 5 0] [0 0 5] と対角化する、という方法をとります。わざわざ媒介変数stを使ってやるのは何故でしょうか。また、2つの固有ベクトルを直交するようにとってみました。 P= [1 1 1] [-3 -1 1] [1 0 -2] として計算したも対角化できました。結局、x+y+z=0を満たす独立なベクトルだったら、本当に何でもいいということですか?

  • 固有ベクトル

    行列A= (3,1,1) (0,1,2) (0,0,-1) の固有ベクトルがうまく求められません。 固有値はλ=-1,1,3と求められたのですが, それすら間違っているのかと不安になってきました。 どなたか解法が分かる方がいましたらご教授願います。

  • 固有値・固有ベクトルの求め方

    固有値・固有ベクトルの求め方 ある行列をA、単位行列をE、Aの固有値をλ、固有ベクトルをuとすると、 (λE-A)u=0 を立てて、(λE-A)が逆行列を持たないことから、λはわかりますよね?そこでλを(λE-A)u=0に代入してuを求めると教科書にあるんですが、0しか出てきません… どうしたら良いのでしょうか?他に方法があるのでしょうか?

  • 固有値と固有値ベクトルの求め方

    A= 0-i   i0  (ゼロと複素数iの行列) という2×2行列の複素数の行列の固有値と対応する長さ1の固有ベクトルを求めよ。という問題が出たのですが、固有ベクトルがわかりません。0になってしまいます。どのように出すか、どなたか教えてください。よろしくお願いします。

  • 固有値、固有ベクトルおよび対角化について

    以下の問題なのですが、(2)が特にわかりません。 (1)も自信ありませんが…。 (2)なのですが、行列Aの固有ベクトルは2個しかないので、 対角化ができません。 もし対角化が出来れば、AP=PBに右からPの逆行列をかけることで、 A=PBP^(-1) となって、簡単にPとBは決定できます。(Bは上三角行列とあります) Bは固有値を対角に並べたもので、Pはそれに対応するように固有ベクトルを並べたものですよね。 しかし今回の場合はAがおそらく対角化できないので、そう簡単にはいかないようです。 どのようにして解けばよいのでしょうか? よろしくお願いします。

  • 3×3行列の固有値と固有ベクトル

    以下の行列Aの固有ベクトルを求めようとしているのですが,解を見つけられないでいます. 2 1 0 1 2 0 0 0 -2 計算を進めた結果,固有値λは3,1,-2となり,λ=3,1に対応する固有ベクトルはそれぞれ[1,1,0]t,[1,-1,0]tとなったのですが,λ=-2の場合で求めた固有ベクトル[1,1,k]t(kは任意の実数)がAx=λxに対応しない値になってしまいます.私の計算に何か問題があるのでしょうか? また,行列Aは対称行列なのでそれぞれの固有ベクトルの内積は0になると思うのですが,固有ベクトルの値が得られないことと何か関係があるのでしょうか? 回答よろしくお願いします.

  • 固有値、固有ベクトルについて

    ある3×3行列をAとして、この固有値がλ1,λ2,λ3であり、対応する固有ベクトルがそれぞれr1,r2,r3となるとき、A^2の固有値がλ1^2,λ2^2,λ3^2となるのがなぜだかわかりません。Aが具体的な数を含む行列であれば計算できるのですが…。初歩的なことで誠に恐縮ですが、ぜひ教えていただきたいです。

  • 固有値、固有ベクトル

    いつもお世話になっています。固有値問題がわかりません。 Ax=λx λ:固有値 x:固有ベクトル としたとき ・A^-1 ・A^2 ・A+A^2 の固有値、固有ベクトルの求め方が分かりません。 Aがどんな行列か与えられてないのでどう解けばいいかわかりません。 教えてください。お願いします。

  • 固有値、固有ベクトル

    (1) A=  0 2 -3 5 この行列の固有値と固有ベクトルの求め方、解答を教えてください

  • 固有値と固有ベクトル・重解を解に持つ場合の解法

    以前質問させていただいたのですが、教科書に固有値が重解の場合の固有ベクトルを求める解法が省かれていて理解できませんでした。 問題はこんな感じです。 2×2行列式A A= |1 -1| |4 -3| の固有値と固有ベクトルを求めよ。 (自分の解法) まず 与式= |1-t -1| |4 -3-t| サラスの方法で展開し、 (1-t)(-3-t) - (-1)・4 =t^2 + 2t 1 =(t+1)^2 となるので固有値をλ1,λ2として、 λ1=-1,λ2=-1 (ここまではできたのですが、解が重解になってしまいました。固有ベクトルを求める方法ができなくてこまってます。) 固有値λ1=λ2=-1より、求めるベクトルをx=t[x1,x2]とすると A= |1-(-1) -1 | |4 -3-(-1)| = |2 -1| |4 -2| よって 2x1-x2 = 0 4x1-2x2 = 0 この二つは同一方程式より、x1 = 2x2 任意の定数αをもちいてx1 = αとすれば、 x = αt[1,2] しかし、答えには、 x1 = αt[1,2] x2 = βt[1,2] + αt[0,-1] とありました。なぜなでしょう? 参考にしたページなんかを載せてくれるとありがたいです。 ちなみにこんな問題もありました。 A= |0 0 1| |0 1 0| |-1 3 2| これは固有値がすべて1になる場合です。 これも解法がのってませんでした。