• 締切済み

lim(X→0)sin(1/X)とlim(x→0)cos(1/X)って何ですか?

f(X) =X^2sin(1/X) (X≠0)     =0        (X=0) (1)f’(0)を求めよ。 (2)f’(X)はX=0で連続であるか という問題なのですが、(1)は解けたのですが、(2)が分かりません。 f’(X)を求めようと思ってf(X)を微分しました。 f’(X)=2Xsin(1/X)-cos(1/X)  となりました。 そしてlim(X→0)f’(X)を求めればいいのかと思ったのですが、 lim(X→0)sin(1/X)とlim(x→0)cos(1/X)が分かりません。 (2)の答えは『lim(X→0)f’(X)は存在しないため、連続ではない。』なのですが、lim(X→0)sin(1/X)とlim(x→0)cos(1/X)が存在せず、(1)で求めた数とは一致しないため連続ではないという考えでいいのでしょうか? お願いします。

noname#111074
noname#111074

みんなの回答

noname#252183
noname#252183
回答No.2

◆関数f(x)がx=aにおいて微分可能であるためには、 1. f(x)がx=aで連続、かつ 2.lim<x→a>{ f(x)-f(a) }/(x-a) の極限が存在する なお、関数 f(x) がx=aで微分可能なら、その点で f(x)は連続である。(逆に、連続なら微分可能、は成り立たない。) ----------- f(x)=x^2・sin(1/x) (x≠0)    =0        (x=0) ◆(1) f’(0)を求めよ。 微分の定義から、 f’(0)=lim<Δx→0>{ f(0+Δx)-f(0) }/Δx =lim<Δx→0>{Δx^2・sin(1/Δx)-0}/Δx =lim<Δx→0>Δx・sin(1/Δx)、 (ここでΔx→0 でsin(1/Δx)の( )内はlim<Δx→+0>で+∞、lim<Δx→-0>で-∞に発散するが、全体が sin の中にあるので絶対値は1以下である。一方 sin の外のΔxは限りなく0に近づくから、結局、) =0 (答) ◆(2) f’(x)はx=0で連続であるか (もし「関数f(x)はx=0で連続であるか」なら、(1)でf(x)は微分可能だったので、YES。 ところが今聞かれているのは、導関数が連続かどうか。) f’(x)=2xsin(1/x)-cos(1/x) (f(0)=0 は特別に定義されていたがf’(0)は何も定義されていない。) この式でx=0 のとき単純に 1/x の値が計算できない=存在しない=ので、f’(x)はx=0 で不連続。 (答) ◆なお、 >(2)の答えは『lim(X→0)f’(X)は存在しないため、連続ではない。』なのですが、 という模範解答(?)は間違い。 例えば y=|x|(絶対値)はx=0でf’(x)は(原点の右からの極限と左からの極限が違うため)存在しないが、立派に連続です。 ◆と言いつつも、おまけで lim<x→0>f’(x)= lim<x→+0>{2xsin(1/x)-cos(1/x)}を求めてみると、 lim<x→+0> 2xsin(1/x)=0 (x→0、かつ -1≦sin(1/x)≦1より。) lim<x→+0>{-cos(1/x)}=-cos(+∞)=振動、 よって lim<x→+0>{2xsin(1/x)-cos(1/x)} の極限は存在しない。

noname#111074
質問者

お礼

回答ありがとうございました。 とても参考になりました。

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「lim(x→0)cos(1/x) が存在しない」ので不連続, です. lim(x→0) sin(1/x) も存在しませんが, 今の場合それは無関係です. (1) が解けているなら無関係であることも分かるはず.

noname#111074
質問者

補足

回答ありがとうございます。 なぜ無関係なのですか?

関連するQ&A

  • (x^2)sin(1/x)

    f(x)を (x^2)sin(1/x) (x≠0) 0 (x=0) としたとき、x=0で、(f(x))'が非連続であることを示せという問題なのですが、 ヒントお願いできますか? とりあえず lim{x→0}(f(x))'=lim{x→0} 2xsin(1/x)-cos(1/x) を求めてみようと思ったのですが、lim{x→0}cos(1/x)って値無いですし、どうすればよいものかと、、、

  • 関数の連続性

    f(x)=xsin(1/x) (x≠0) f(x)=0 (x=0) (1)x=0におけるf(x)の連続性、微分可能性を調べよ。 (2)x≠0におけるf(x)の連続性、微分可能性を調べよ。 (1)は lim[x→0]xsin(1/x)=0=f(0) より連続性をもっている。 f'(x)=lim[h→0]{f(0+h)-f(0)}/h =lim[h→0]sin(1/h) となって極限値は存在しないよってf(x)は原点において 微分不可能である。 上記が自分なりに考えた答えです。あっているかどうかは分かりません。 解答がない為。 (2)についてですが、 x≠0の時は当然連続であるなんだと思いますが、どのように証明したらよいのですか?また、微分可能性はどのようになるのでしょうか? ご指導おねがい致します。

  • x^2sin(1/x) と 0(x=0) での連続性

    f(x)=x^2sin(1/x) (x≠0) 0 (x=0) での関数の連続性についての質問です。 x≠0のときは明らかに連続であるから、x=0のときの連続性を調べようとしたのですが、教科書を読むと、lim[x→a]f(x)=f(a)ならば連続であると書かれていました。 計算してみるとlim[x→0]x^2sin(1/x)=0=f(0)となり、f(x)は連続であるように思えたのですが、答えをみると、「原点以外で連続」となっていました。 lim[x→0]x^2sin(1/x)の答えが間違っているのですか?

  • 関数f(x)の連続性と微分可能性に関する問題です。

    aを実数とする。次で定義される関数f(x)の連続性と微分可能性を調べよ。 x≦0のときf(x)=0、x>0のときf(x)=x^a*sin1/x という問題について、解いている途中で混乱が生じました。 x≠0のときf(x)は連続かつ微分可能だから、x=0におけるふるまいを調べる。 x>0のとき、f'(x)=a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/xであり、x<0のときf'(x)=0 (i)右からの極限 -1≦sin1/x≦1だから、-x^a≦x^a*sin1/x≦x^a はさみうちの原理より、lim【x→+0】(-x^a)≦lim【x→+0】f(x)≦lim【x→+0】x^a a>0ならばlim【x→+0】f(x)=0 a=0のときはlim【x→+0】f(x)=1 a<0のときはlim【x→+0】f(x)は発散。 よってa>0のとき連続。a≦0のとき不連続。(答) 次に微分可能性を調べる。 (ii)右からの極限 lim【x→+0】f'(x)=lim【x→+0】{a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/x} (i)と同様に考えるとlim【x→+0】a*x^(a-1)*sin(1/x)はa>1のとき0。a=0のときも0。 a=1のときsin∞となり発散で微分不可能。a<1のときも発散で微分不可能。 ゆえにa>1またはa=0に限定してlim【x→+0】f'(x)の極限を調べる。 このときlim【x→+0】f'(x)=lim【x→+0】{-x^(a-2)*cos1/x} -1≦cos1/x≦1であり、同様にはさみうちの原理からlim【x→+0】f'(x)はa>2ならばlim【x→+0】f'(x)=0で微分可能。a<2ならば微分不可能。(答) 問題集には、a>1のとき微分可能。a≦1のとき微分不可能と書いてあります。私の解き方のいけない点を教えてください。

  • 関数の連続性ε-δ論法

    f(x)=xsin(1/x) (x≠0) f(x)=0 (x=0) (1)x=0におけるf(x)の連続性、微分可能性を調べよ。 (2)x≠0におけるf(x)の連続性、微分可能性を調べよ。 (1)ε-δ論法を用いて連続性を調べる。 0<x-0<δのとき |f(x)-f(0)|=|xsin(1/x)-0|=|x|*|sin(1/x)|≦|x|<δ 上記の式より lim[x→0]xsin(1/x)=0である。 よって x=0のときf(x)は連続である。 f'(x)=lim[h→0]{f(0+h)-f(0)}/h=lim[h→0]{hsin(1/h)}/h =lim[h→0]sin(1/h) lim[h→0]sin(1/h)の極限値は存在しない よってf(x)は原点において微分不可能である。 (2)(1)と同じようにε-δ論法を用いて連続性を調べる。 任意の点をaとおいて 0<|x-a|<δのとき |f(x)-f(a)|=|xsin(1/x)-asin(1/a)| =(x-a)sin(1/x)+a{sin(1/x)-sin(1/a)} =(x-a)sin(1/x)+2a[sin(1/2){(1/x)-(1/a)}cos(1/2){(1/x) + (1/a)}].....和と積の公式 となるのですが、ここから上記の式が 上記の式<δ にどのようにすれば良いのかが分かりません。 また、微分可能性は lim[h→0]{hsin(1/h)-asin(1/a)}/h =lim[h→0]sin(1/h)-{asin(1/a)}/h となってよくわからなくなってしまいます。 お願いします教えて下さい。 以上よろしくお願い致します。

  • sin、cosの微分

    sin、cosの微分の証明をするときにlim(sinx)/x=1を使いますが、 これは、どうやって証明するのでしょうか?

  • lim sin(x)/x  について

    少し前に質問がありましたし、過去の議論もあるようですが、私が納得できていないので質問としたいと思います。興味のある方は付き合ってください。質問はsin関数の微分を導出する基礎的な関係式 lim{x->0}sin(x)/x=1 スタート地点はこの式を証明した後にsinの微分を求めることを念頭においています。逆のロジックは受け付けません。 それで結局私がいきついたのは円周と外接円の議論ですが、それは積分法を認めると自明だとおもうのです。弧の長さを積分で書けば ∫dx√[1+(dy/dx)^2] ---(1) となり、ここで微分dy/dxが出てきますが、ここで傾きdy/dxは円の形から外接円の接線より常に小さくなります。(図がなくてすみません。)よって微分が分らないけど、弧の長さは外接円で抑えられると思います。 数学的には円のグラフの単調減少性という言葉になると思います。 それでsinの微分は分らないけど、これで外接多角形の円周がながくなるというのはこれで証明されるといってはいけないんでしょうか?何か見落としがあるんでしょうか? 外接多角形の方が円周が長いことが証明できるなら、問題の極限は sin(x)≦x≦sin(x)+[1-cos(x)]  ---(2) をつかってハサミうちすればよいと思います。このハサミうちは直感的には分りやすいので高校レベルの証明ならこれで問題ないと思いますがどうでしょう? 質問は外接多角形の円周のほうが長いのは(1)と円のグラフの単調減少から示されるかどうか。(2)のハサミうちに落とし穴があるのかどうかの2点です。

  • lim_(x→π/4) (sin x -cosx) / ( x - π/4) の極限値

    いつもお世話になっています。 極限値を求める問題2問です。 (1) lim_(x→π/4) (sin x - cos x) / (x - π/4)  x-π/4 を t と置いて考えてみたのですが、途中から分からなくなり ました。 (2) lim_ (x→1) (x-1)/{^3√(x) -1} よろしくお願いします。

  • ∫cos(x)sin(x)dx を置換積分したいんですが

    ∫cos(x)sin(x)dx を置換積分したいんですが どうも答えが一致しません。 t=sin(x) dt/dx = cos(x) ∴dt=cos(x)dx ∫cos(x)sin(x)dx =∫t dt =(1/2)t^2 =(1/2)sin(x)^2 + C 答えは -(1/2) cos(x)^2 + C となるはずなんです。 どこで間違ったのでしょうか?

  • f(x,y)=(x^2+y^2)/sin(x^2+y^2)^-1/2 

    f(x,y)=(x^2+y^2)/sin(x^2+y^2)^-1/2 の連続性を調べ、一階偏導関数をすべてもとめ、その連続性を調べ、(0,0)での全微分可能性を調べよ。 という問題がでました。 一階偏導関数はもとめられるのですが、f(x,y)の連続性、一階偏導関数の連続性がどうのようにしてもとめればいよいのかわからなくなってしまいました…ご教授ください! 全微分可能性は ε(h,k)=f(h,k)-f(0,0)=(h^2+k^2)sin(x^2+y^2)^-1/2 η(h,k)=ε(h,k)/(x^2+y^2)^-1/2 lim((h^2+k^2)^1/2→0)=0 よって(0,0)で全微分可能。 で大丈夫ですか?