• 締切済み

数列の最後尾を先頭に繋げて作られる環状の数列の呼び方は?

motsuanの回答

  • motsuan
  • ベストアンサー率40% (54/135)
回答No.7

すっかり忘れてしまっていたのですが、 下で説明したような計算規則(?)を合同式といいます。合同式で検索してみればいろいろあると思います (なお、下の説明と記号が違うと思いますが私のほうがおかしいのでURLの記号を使ってください)。 たとえば、 http://markun.cs.shinshu-u.ac.jp/learn/integer/in1/head-j.html http://www.rimath.saitama-u.ac.jp/lab.jp/fsakai/congruence.html どのような経緯でこのような演算をお考えになったのか興味があるところですが、合同式の概念は数学に限らず 情報科学(符号理論や暗号)でも基本的な考え方なのでその手の入門書を読んでみるといいかもしれません。 ブルーバックスの一松信『暗号の数理』にはこの手の話がのっていたような気がします。 本としておすすめは草場公邦『ガロワと方程式』の最初の30ページに合同の話が コンパクトにまとまって例も豊富にかかれています (この本自体は160ページ程度のガロワ理論の入門書です)。 追加の質問に関してですが、(記号や用語の意味は上側のURLを見てください) (1)、(3)に関しては、整数の素数pを法とする剰余類に関しては、剰余類の元の間で加減乗除で閉じています。 剰余類で a×b≡1 mod p が成り立つときaに対してbは一意的に決まって(つまり、逆数がただ一つ決まって)、この数を他の数に掛けることをaでわることと定義する(つまり、普通の計算と同じに考えると)、わり算もできます。 ところが、素数でない数qを法とすると、qは他の数によって、q= u×v と表されるため、a×b≡1 mod q となるbがaに対して一意的に決まらず普通のわり算とは変わってしまいます。つまり、一般には加減乗除ではなく加減乗が成り立つということです。 glairの表現でいえば、剰余類全体に剰余類のどんな元を掛けても、法が素数であえれば循環的な順序は変わらないが、素数でない場合は部分的にしか順序が保たれない。(・・・じゃあ、その部分的というのはどういうふうなのかというと、考えればわかると思いますが、私にはすぐにはむりでございます・・・。) (2)に関しては、演算に関しては、基本的に加減乗除で考えると思います。ただし、演算として、普通の意味の加減乗除でないものも考えられ、その場合にはその演算規則により、剰余類が代数的に閉じているかどうか決まると思いますが、ここでの要点は、剰余類が数の組と演算の組でワンセットになっていて、そのとき初めて数学としての構造がきまって議論ができるということだと思います。したがって、特異な演算を考えるのはまた別な話になると思います。 こんなところでしょうか。

glair
質問者

お礼

たびたびの回答ありがとうございます.大変助かります.合同式というのですね.なるほど….ブルーバックス…ガロワ…群論を執筆している時期に、女性がらみのことで決闘に呼ばれて、そのため若くしてなくなったという数学の天才とかいう人…でしょうか…門外漢の私には、うわっ、ガロワ…すごい…という感じです(→いかにも素人の反応^^;).この度は本当にありがとうございます.

関連するQ&A

  • フィボナッチ数列に関する問題 大学入試

    フィボナッチ数列1 1 2 3 5 8 13 21 .............. がある 初項は1 第2項は1であり それ以後の項は前2項の和になっている この数列の初項から第1000項までに1の位が7である数は全部でいくつあるか という問題なのですが 書き出してみて規則性を見つけようとしましたが、見つからず ならば一般項を表現してそれから解こうと思ったのですがそれもできず うまく解けませんでした どうやって解けばいいのでしょうか?

  • 数学B(数列)を教えて下さい。

    (1/3)=3分の1 を表します。 次の数列の初項から第n項までの和を求めよ。 (1) 1/2・4 ,  1/4・6 , 1/6・8,・・・・・・ (2) 1/1+√3 , 1/√3+√5 , 1/√5+√7 ・・・・ (3) 1 , 1/1+2 , 1/1+2+3・・・・ また、数列の問題集とかで勉強したいと思っていますが、 何か良い参考書や問題集を紹介してくれると有り難いです。 高1なんで、初歩から応用までいけるものがいいんですが。 教えてくれる方、お願いします。m(_ _)m

  • 数列

    まずはじめに、私がこの問題を自分で十分に考えてからの質問という事を了承ください。 私は次に挙げる二つの数列の問題に悩んでいます。解答に至るまでの過程のヒントを回答してもらいたいと考えています。 (1)   1+2/2+3/2^2+4/2^3+・・・・+n/2^(n-1)=□ (2) 数列{an}は、an=3n-2の等差数列である。   数列{an}の初項から第n項までのn個の項のうち、   異なる2項の積の総和をSnとする。   例えば、   S3=a1a2+a1a3+a2a3である。   このときS10=□である       回答よろしくお願いします。

  • 問題の意味

    次の等比数列の和を求めよ 12、-6,3、、、、のはじめのn項。 答えによると {初項からn項までの和を求めよ} という問題らしいのですが"はじめのn項"からこう読むには無理があるように思うのですが、それとも読解力がないだけでしょうか?

  • 2,7,1,4,7,2,8,1,4,1,6,..

    初項を2、第2項を7とします すべての項は一桁とします。 隣り合う項をかけてその結果を数列の最後につけていくとします (説明が下手でごめんなさい。。。) つまり 2,7,1,4,7,2,8,1,4,1,6,... といった具合です。 これが6を無限個含むことを示せという問題なんですが、見当がまったくつかず。。。 ちょっと思いついたのは偶数をかけるとどんな数字でも一桁目は偶数になるので、偶数は無限個あるというのだけで、、、 規則性が見えるかなとおもっていろいろ書き出したのですが、何もわからず。。。 ヒントでもいいのでお願いします

  • 漸化式の解を求めてください

    化学系の研究をしているものですが, 解析をしていて,行き詰まりました. 下の式の一般項[An]を求めてほしいのですが・・・. ([]は見やすくするためで,意味はありません) log([An+1] / [An]) = B([An] -1) [An]は数列です. 初項はA0(定数)です. Bは定数です. nは0以上の整数です. この数列が解けないと研究が先に進みません. どなたか解ける人,よろしくお願いします.

  • 自分で探してもなかなか見つからないので・・・

    今ある分野の研究をしている大学院の研究室を探しています。 その分野とは自然の生物の機構や構造を機械に応用するという分野です。 バイオメカニズムとかバイオメカトロニクスとか呼ばれていますが国によっても呼び名は違うようなので、詳しいことはわかりません。 もしこのような内容を研究している場所があれば教えてください。

  • 文字式を各項にとる数列の一般項

     初めまして、暇つぶしに数学の考えごとをしていると、分からないことがありましたので、質問させていただきます。数(?)列についてなのですが、知識は高校数学程度しかなく、しかも数列の分野はかなり忘れ気味です。高校数学に毛の生えた程度の内容ではとても説明できないという場合、高度な解説をしていただいても馬の耳に念仏ということになってしまいますので、その場合はあまり詳しく説明していただかなくても結構です。  {A(n)}=n^x  という文字の入った数列を考えます。この第1階、第2階、第3階……の階差数列を考えてゆきます。階差数列をダッシュをつけて表現しますと、具体的には、  {A'(n)}=A(n+1) - A(n)=(n+1)^x - n^x  {A''(n)}=(n+2)^x - 2(n+1)^x + n^x  {A'''(n)}=(n+3)^x - 3(n+2)^x + 3(n+1)^x - n^x  ……  ということになります。この一般の場合を考えたいのです。考え方として、{A(n)}、{A'(n)}、{A''(n)}、……の一般項を順番にならべた数列{B(m)}を考えて、その一般項を求めたいのだ、ということにもなります。  {B(1)}=n^x  {B(2)}=(n+1)^x - n^x  {B(3)}=(n+2)^x - 2(n+1)^x + n^x  ……  {B(m)}=???  ということです。まあ、式の形からいって、一般項はきっと  {B(m)}=Σ[k=1,m] {(-1)^(k+1)} * [m!/{k!(m-k)!}] * {(n+k-1)^x}  という形になるんだろうな、と想像はつきますが(m!/{k!(m-k)!} はパスカルの三角形の一般項)、どうしてそうなるのか分かりません。ご教示いただきたいです。 (あと、ついでの話になりますが、{B(m)}の第~階差数列を同様に考えて、同様に各一般項から数列{C(l)}とかも作れそうですね。その一般項を考えて……とやってると、終わりがなさそうです)  高校数学で簡単にできることをド忘れしてやしないか、不安でヒヤヒヤしますが……。

  • 等比数列の和の公式なんですが…

    等比数列の和の公式なんですが… 等比数列の公式の和の証明で、よくみるヤツが1つありますよね。 http://www5a.biglobe.ne.jp/~nozo-mu/touhiwa.html ←コレ この証明も理解しているのですが、僕の中でもう1つ証明があるんです。 この証明でいいのか気になって質問しました。その証明は以下の通りです。 まずはじめに恒等式を用意します。 1-r^n=1-r^n 左辺を因数分解して (1-r)(1+r+r^2+r^3+…+r^(n-2)+r^(n-1))=1-r^n 1≠rのとき両辺を1-rで割って 1+r+r^2+r^3+…+r^(n-2)+r^(n-1)=(1-r^n)/(1-r) ここで両辺にaをかけます。 a+ar+ar^2+ar^3+…+ar^(n-2)+ar^(n-1)=a(1-r^n)/(1-r)  …※ すると左辺は初項a,公比rの第n項までの等比数列の和となります。 よって※の左辺をSnとすると、 Sn=a(1-r^n)/(1-r)                      この証明は間違っているでしょうか。 間違っているのなら、その理由もお願いします。

  • だれか漸化式について教えてください。

    もういい中年なのですが昔数学で苦手だった分野を 勉強しています。 いま『なるほど高校数学 数列の物語』と云う本を読んでいます。  漸化式のところでつまずいて前に進めません。  どなたか教えてもらえないでしょうか。  -------------------  初項がA1、An+1=PAn+Q n>1 P、Qは定数  の漸化式で確認しておきましょう。  An+1-α=P(An-α) つまり An+1=PAn-Pα+α  と与えられた漸化式       An+1=PAn+Q  を見て、定数項を比べると   Q=-Pα+α=α(1-P)  となり、この式から       α=Q/(1-P)・・・・・(1)  とすればよいことが判ります。このとき数列{An-α}は  An+1-α=P(An-α)より、公比Pの等比数列となり、その  初項は   A1-α=A1-Q/(1-P)・・・・・・・(2)  なので   An-Q/(1-P)=(A1-Q/(1-P))×Pのn-1乗・・・・(3)  よって   An=(A1-Q/(1-P))×Pのn-1乗+Q/(1-P)・・・・・(4)    と一般項が求まります。  -------------------  数列{An-α}の公比はPになることは直感的に判るのですが  初項はどうして求めるのだろうかと思って読んでいたのですが  最後に求まったのはAnの一般項でした。  それに(4)式にn=1を代入して出てくるのはA1で当たり前の結果  です。  ここでの漸化式はAn+1-α=P(An-α)の形式に持ち込めたら  公比Pの等比数列の公式をあてはめることが出来てnの一般項  が求まると云う主旨かと思うのですが、説明の流れがいまひとつ  つかめません。  解説のほどよろしくお願いいたします。