• 締切済み

直交截線族と複素積分について

直交截線族に関する問題で、以下の2問がうまく解けませんでした。コーシー・リーマンの関係式を使ってもう一方を求めてから変数を消去してできた問題もあるのですが、この2問はうまくいきませんでした。解き方が間違っているのでしょうか? 問題1 関数 w(z)=u(x,y)+iv(x,y) が正則ならば、u(x,y) = a ,v(x,y) (a,b は実媒介変数)で表されるz平面状の2組の曲線族は互いに直交する。この性質を用いて、次の曲線族の直交截線族を求めよ。 (3) x^2 + y^2 = 2ax (4) sin(x^2 + y^2) = ae^(2xy) ちなみに、略解はそれぞれ、 x^2 + y^2 = 2by、y - 2 = b(x - 1) です。 次に複素数積分の問題なのですが、8問中、下の2問だけ、留数定理をつかっても、うまく計算できませんでした。他の解き方で解かなければならないのでしょうか? 2.次の関数をそれぞれ示された閉曲線にそって積分せよ。 (7) (e^(1/z))/ z^2 (8) (e^z) / sin z 以上です。よろしくお願いします。

みんなの回答

  • oodaiko
  • ベストアンサー率67% (126/186)
回答No.1

補足要求です。 >問題1 >関数 w(z)=u(x,y)+iv(x,y) が正則ならば、u(x,y) = a ,v(x,y) (a,b は実媒介変数)で表され… v(x,y)=b ので良いのでしょうか。多分そうだと思いますが。 >問題2.次の関数をそれぞれ示された閉曲線にそって積分せよ 積分したい閉曲線が書いてありません。どちらも各関数の特異点を囲む閉曲線だと思いますが。

xell
質問者

補足

>問題1 v(x,y)=b で良いです。 >問題2 それぞれ閉曲線は、単位円 |z|= 1 です。 抜けてしまいました。すみませんでした。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 複素関数の問題です。

    複素関数の問題です。 複素関数の問題で分からない問題があって困っています。 【問題】 F(z)=u(x,y)+iv(x,y), z=x+iy において u(x,y)=a, v(x,y)=b で表される曲線をxy平面上に描いたとき、それらの交点においてF´(z)≠0であれば、その交点における各曲線に対する接戦が互いに直交することをコーシー・リーマンの関係式を用いて示せ。ただしF´(z)はF(z)の導関数であり、関数u(x,y)の点(x,y)での微分は、 du=(∂u/∂x)dx+(∂u/∂y)dy で与えられる。 わかる方がいれば、どうか教えていただけないでしょうか? よろしくお願いします。

  • 複素積分(コーシーの積分定理)について質問です

    zを複素数としする。コーシーの積分定理によれば「関数f(z)が領域Dで正則であるとして、領域D内の任意の閉曲線Cの内部が領域Dに含まれる場合、閉曲線Cに沿った関数f(z)の周回積分は0になる。」が成り立つと思います。 そこで次の問題を考えました。(zは複素数変数、aは実数の定数、iは虚数単位とする) 「原点を中心とする半径aの円を閉曲線Cとする。閉曲線Cに沿った、関数f(z)=1/(z-ai)の周回積分Iをを求める。」 閉曲線Cの内部で関数f(z)は正則だけれども、閉曲線Cは関数f(z)が正則でないz=aiの点を含んでいるのでコーシーの積分定理は利用できない。…(1) そこで、次のように積分を行うことにしました。閉曲線Cを複素数で表して、C:z=a*exp(iθ) (0≦θ≦2π) dz/dθ=ai*exp(iθ) よってI =∫f(z)dz =∫{ai*exp(iθ)/(a*exp(iθ)-ai)}dθ (積分範囲は0≦θ≦2π) ここで、[Ln(a*exp(iθ)-ai)](0≦θ≦2π)=0…(2) そこで質問です。 (1)は正しく、閉曲線の外周上に被積分関数が正則で無い部分があるなら、コーシーの積分定理は成立しないのでしょうか? (2)ln(z)は無限多価関数なので、どの複素関数の不定積分でもないと思ったので、Ln(z)を不定積分として用いたのですが、これは大丈夫なのでしょうか? ご回答よろしくお願いします。

  • 積分の変数変換について

     積分の変数変換に関する質問です。一番簡単な直交座標から極座標への変換を例にします。   x = x(r,θ) = rcosθ.   y = y(r,θ) = rsinθ. であるとき f(x,y) = 1 を x^2 + y^2 ≦ R^2 という円内を積分領域して積分すれば   ∫∫f(x,y)dxdy = ∫∫dxdy = ∫∫rdrdθ ・・・・・・ (#) となり円の面積が求められます。つまり直交座標から極座標に変換して積分するときは   dxdy →drdθ ではなく、   dxdy →rdrdθ としなければならないと、どんな参考書にも書いてあります。つまり r を余分に付け加えるわけですが、これは   ┌ ┐ ┌       ┐┌  ┐   |dx|=|cosθ -rsinθ||dr |   |dy| |sinθ  rcosθ||dθ|   └ ┘ └       ┘└  ┘   |J| =|cosθ -rsinθ|= rcos^2θ- (-rsin^2θ) = r      |sinθ  rcosθ| のように行列式|J|でも求めることができ、|J|をヤコビアンと呼ぶということも参考書に載っています。  一方で   rdrdθ= rdθ*dr は極座標における面積要素ですから(#)の変換は直感的にも納得できます。θは角度ですから drdθでは面積になれないわけです。(#)は具体的には   ∫[0~2π]∫[0~R]rdrdθ で計算できます。この式だけじーっと見ていると、いつのまにか r とθが極座標の変数であることが忘れ(笑)、あたかもθを縦軸、r を横軸とする '直交座標' において関数 θ= r を積分していると見なせます。  で、ここからが質問なのですが・・・  直交座標から任意の座標に変数変換して積分するということは、結局のところ、その任意の座標を直交座標と見なして計算することであると考えてよいのでしょうか?  たとえば   x = x(u,v,w)   y = y(u,v,w)   z = z(u,v,w)   ┌  ┐  ┌        ┐┌ ┐   |dx| |∂x/∂u ∂x/∂v ∂x/∂w ||du|   |dy|=|∂y/∂u ∂y/∂v ∂x/∂w||dv|   |dz| |∂z/∂u ∂z/∂v ∂z/∂w||dw|   └ ┘  └         ┘└ ┘     |∂x/∂u ∂x/∂v ∂x/∂w|   |J| =|∂y/∂u ∂y/∂v ∂x/∂w|     |∂z/∂u ∂z/∂v ∂z/∂w| であるとき   dxdydz = |J|dudvdw という変数変換は、 u、v、w がどんな座標の変数であれ、最終的には u、v、w の '直交座標' で計算することであると考えてよいのかということです。  任意の座標同士の変数変換というのはどうなるのでしょうね。ちょっと想像しかねます。

  • 複素積分についてです。

    ∫(z^3+5)dz /z{(z-1)^3} の閉曲線Cに沿った積分を求めるのですが、問題は(1)z=0を中心とした半径1/2の円周を反時計回りに一周した積分値。(2)z=0を中心とした半径2の円周を反時計回りに一周した積分値を求めよ。 なのですが、(1)では特異点1を、(2)では特異点0,1をC内部に含んでいて、積分値は0にならず一定の値をとることは分かるのですが、被積分関数がうまく部分分数分解できず、コーシーの積分公式も使えず、値が求められないのですがどうしたらいいのでしょうか・・・・。

  • 複素積分

    お世話になります。 【問題】 次の関数を示された閉曲線Cに沿って積分せよ。 f(z) = 1 / ( z^(2) + 1 ) C : 原点中心、半径 r > 1 の円周 【解答】 f(z) = 1 / ( z^(2) + 1 )はこの円内で正則でない。 そこでf(z) = 1 / ( z^(2) + 1 )を部分分数展開すると… (解答続く…) 【質問】 関数が正則であるというのは領域内で微分可能であるということはわかっているのですが、なぜこの問題のf(z)は微分不可能なのかわかりません。またこの問題はコーシーの積分定理とどう関係あるのでしょうか。(定理はわかっています) よろしくお願いします。 ※参考URL※ http://next1.msi.sk.shibaurait.ac.jp/MULTIMEDIA/complex/node19.html (このページを使って勉強しています)

  • 複素積分の問題

    複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ

  • 複素積分について

    コーシーの積分定理によると閉曲線上の積分は積分値ゼロになりますが、例えば |Z|=a上を正の向きに一周する ∫xdz はゼロになりません。 これはどういうことなのでしょう?

  • 複素積分の解法について

    こんばんは。複素積分の問題なのですが、例えば ∫c{(x+y)+i(x-y)}dz (積分経路Cは、0~1+i~1) のような問題の場合どのような回答になるでしょうか。 また、 ∫c[z/{(z-2)(z-4)^2}]dz (C:|z|=1) のような問題の場合、|z|=5などの場合はコーシーの積分表示などで解くことができると思うのですが、この問題のように特異点が分からない場合はどうしたらいいでしょうか。どなたか分かる方がおられれば教えていただけると幸いです。よろしくお願いいたします。

  • 複素関数の積分について教えてください。

    複素関数で、次のような問題がだされました。 Cをx=cosyに沿って1から-1+πiに至る曲線とするとき、次の積分を求めよ。 ∫c ze^zdz よくわかってないので、次のような回答になってしまいました。 根拠はありません。 f(z)=ze^zは前平面で正則なので、f(z)の原始関数F(z)の原始関数によって ∫c (ze^z)dz=[ze^z](←πiから1まで)-[e^z](←πiから1からまで) =πie^πi-e-(e^πi-e) 以上です。 どなたか、正しい答えを教えてください。

  • 楕円にそった複素積分

    複素積分の問題でこの問題がわかりません 次の曲線Cに沿って次のf(z)の積分を計算せよ f(z)=Z^2 曲線C:(x/a)^2+(y/b)^2=1(この楕円の上半分) (-a,0)とCのとの交点をA,(a,0)とCとの交点をBとしB→Aにそう積分です この問題が分かりません おそらく円の時はz=re^iΘとおいて積分するので楕円もこのように何らかの方法で置き換えると思うんですが、どうやって置き換えればいいのか分からないので分かる方、教えていただけると助かります

このQ&Aのポイント
  • MFC-J950DNのWi-Fi接続方法を知りたいです。また、携帯電話からコピーする方法も教えてください。
  • MFC-J950DNのWi-Fi接続方法と携帯電話からのコピー方法を分かりやすく解説します。
  • MFC-J950DNの設定でWi-Fi接続をする方法と携帯電話からのコピー方法をご紹介します。
回答を見る