写像・再帰的定義について

このQ&Aのポイント
  • 写像・再帰的定義についての要約文1
  • 写像・再帰的定義についての要約文2
  • 写像・再帰的定義についての要約文3
回答を見る
  • ベストアンサー

写像・再帰的定義について

ρは、X^* → X^*  ρ:x1x2x3x4x5x6...xn→xnxn-1xn-2...x2x1 (xk∈X (k=1,2,3,.....)x1x2x3x4x5x6...xn ∈X^* とします) とするような写像だとすれば この写像ρを再帰的に定義せよ。 という問題で 自分は ――――――――――――――――――――――――――――――――― 初期段階 ρ(∧)=∧ 再起段階 ρ(wx) = xρ(w) ――――――――――――――――――――――――――――――――― としたのですがこれではまちがいですか?? なんか再帰的ではないような気がして・・・

  • rousei
  • お礼率56% (111/196)

質問者が選んだベストアンサー

  • ベストアンサー
  • liar_adan
  • ベストアンサー率48% (730/1515)
回答No.1

再帰的になってると思いますよ。

rousei
質問者

お礼

確認ありがとうございました^^

関連するQ&A

  • 線形写像

    線形写像 f:V→Wは λ1,λ2,....,λn∈K , x1,x2,....,xn∈Vに対し f(Σλx)=Σλf(x) が成り立つ事の証明はどのようにすれば良いでしょうか。 よろしくお願いします

  • 行列表示と取替写像の定理

    線形代数を勉強しています。 http://www22.atwiki.jp/linearalgebra/pages/53.html このサイトの17-6-3行列表示と取替写像の命題の証明が分かりません。 具体的には、P*基底(x1',x2'...,xn') = 基底(x1,x2,...,xn) になるのが分かりません。 Pを、E→E'の写像と定義したなら、P*基底(x1,x2,...,xn) = (x1',x2'...,xn')になるのでは、と思ってしまいます。 そこが分かればわかりそうなのですが・・・。 よろしくお願いします。

  • 線形写像、ランクの問題について説明お願いします。

    線形写像、ランク の問題及び解答があるのですが、解答が理解できないので教えてください。 -----例題--------  n個の実数 a1, a2, ・・・、an を固定する。R^n のベクトル x で、その成分 x1,x2,・・・、xn が方程式            a1x1 + a2x2 + ・・・ + anxn = 0 をみたすようなものの全体を W とするとき、W の次元を決定せよ。 -----解答--------- 写像 f: R^n → R を      f (ベクトル x ) = f t (x1, x2, x3,..., xn) = a1x1 + ・・・ + anxn (ftのtはf の転置行列の印)             によって定義すると、これは線形写像である。そして、W = Ker f に他ならない。 もしもすべての ai が 0 の場合は明らかに W = R^n であるから、dim W = n である。  もしも ai のうち1つでも 0 でないのがあると、写像 f は全射になるから、線形写像の基本定理から      dim W + dim R = dim R^n = n したがって      dim W = n - 1 -------解答終わり------- という例題解答があるのですが、なぜ dim W = n - 1 となるのか、つまり、 なぜ dim R = 1 となるのかがわかりません。 説明をよろしくお願いします。

  • 微積分の証明問題についての質問です。

    微積分の証明問題についての質問です。 xの2乗をx^{2}のように表しています。 f:R^{n} → R , p∈R とする。 fが微分可能のとき、次の(1),(2)が同値であることを示せ。 (1)任意のα>0 と(x1,x2,…,xn)∈R^{n} に対して、 f(αx1,αx2,…,αxn) = α^{p}f(x1,x2,…,xn) …(※) (2)任意の(x1,x2,…,xn)∈R^{n}に対して、 Σ[k=1,n]xk{∂f(x1,x2,…,xn)/∂xk} = pf(x1,x2,…,xn) …(♯) ヒントとして、 ・(1)⇒(2) (※)の両辺をαで微分して、α=1とおく。 ・(2)⇒(1) F(x1,x2,…,xn,α) := α^{-p}f(αx1,αx2,…,αxn) を考えて、 ∂F(x1,x2,…,xn,α)/∂α = 0 を示せ。 が与えられています。アドバイスお願いします。

  • 写像の合成と定義域

    写像について、逆写像と定義域がわからないので質問します。 問題は、Aを正の偶数全体からなる集合、Bを正の奇数全体からなる集合として、f:A→Bをf(x)=x-1によって定義する(1)f^(-1)を求めよ。(2)f^(-1)・f、f・f^(-1)(・は合成写像の記号のつもりです。)を求めてそれらの定義域、値域を明らかにせよ。 というものです。 解答(1) fはAからBの上への1対1の写像である・・・(ア)から、その逆写像f^(-1)は存在して、f^(-1)はBからAの上への1対1の写像である・・・(イ) またf(x)=x-1よりx=f^(-1)(x-1)、x-1=yとおくと、x=y+1よりy+1=f^(-1)(y)すなわちf^(-1)(x)=x+1。 (2) {f^(-1)・f}(x)=f^(-1){f(x)}=f(x)+1=(x-1)+1=x、{f・f^(-1)}(x)=f{f^(-1)(x)}={f^(-1)(x)}-1=x+1-1=x、 ここで(ア)(イ)よりf^(-1)・fはAからAの上への1対1の写像で、f・f^(-1)はBからBの上への1対1の写像である。したがって、f^(-1)・fの定義域、値域ともにA、f・f^(-1)の定義域、値域ともにB。 自分なりに考えてみて疑問があるのですが、問題(1)はf(x)の逆関数を求めればよい、しかしy+1=f^(-1)(y)としては、逆関数を求めるときのxとyを入れ替えるができないし、解答ではyをxに書き換えるといったことをしている。これが最初の疑問です。問題(2)では{f^(-1)・f}(x)のxはAの任意の要素で、{f・f^(-1)}(x)のxはBの任意の要素であると思うのですが、これはf(x)のxはAの任意の要素で、{f^(-1)(x)}のxはBの任意の要素であり。{f^(-1)・f}(x)=f^(-1){f(x)}とf^(-1)の要素がf(x)、f(x)の要素xはAの任意の要素だからと考えました。同様に{f・f^(-1)}(x)も考えましたが、自分の考えがあっているか疑問です。 どなたか、なぜ問題(1)でyをxに書き換えるかをしてよい理由と、問題(2)で自分の考えがあっているかと、間違っているときは、なぜ解答のようになるのかを教えてください。お願いします。

  • この写像がwell definedである事の証明

    [Q] Let V,W be finite dimensional vector spaces over the same field. {x1,x2,…,xn} is a basis for V Tx1=y1∈W,…,Txn=yn∈W then you can define∀x∈V x=c1x1+c2x2+…+cnxn T(x)=c1y1+c2y2+…+cnyn (1) Show that this function is well defined. (2) Show that this funciton is closed under scalar multiplication. という問題で質問があります。この問題の意味は下記の通りだと思います。 "well definedである事示せ"とは具体的にどうすればいいのかわかりません。 [問]V,Wを体F上の有限次元ベクトル空間とし、{x1,x2,…,xn}をVの基底とする。線形写像Tに於いて、 T(xi)=yi∈W (i=1,2,…,n) …(1)、 そして、∀x∈Vに対して, x=c1x1+c2x2+…+cnxn …(2) T(x)=c1y1+c2y2+…+cnyn …(3)と定義すれば (1) この写像がwell definedである事を示せ。 (2) この写像がスカラー倍に対して閉じている事を示せ。 [(1)の証] T(x)=T(Σ[i=1..n]cixi) (∵(2)) =Σ[i=1..n](ciyi) (∵(3)) =Σ[i=1..n]ciT(xi) (∵(1)) これからα,β∈Fとすると T(αx+βy)=αT(x)+βT(y) …(4)が成立している事も表している事が分かる。即ち、Tは線形写像。 よって,この定義は妥当である。 [(2)の証] ∀c∈F,∀x∈V,T(cx)=cT(x)∈Wとなる事を示せばよい。 0をVの零ベクトルとすると T(0)=T(Σ[i=1..n]0・xi)=Σ[i=1..n]0・yi (∵(1),(2),(3))=0 …(5). y:=0と採ると,(4)からT(cx)=cT(x) (∵(5)) を満たす。 従って、Tはスカラー倍に対して閉じている。 という風に解いたのですがこれで正解でしょうか?

  • 連続関数の定義について

    定義 1: f : S → T が点 x ∈ S で連続であるとは, 任意の ε >0 、ある δ >0 が存在して、 d(x,y) <δ ⇒ d(f(x),f(y)) <ε が成り立つ 定義2: f:S→Tが点x∈Sで連続であるとは, xk →xであるようなすべての数列 {xk}∞k=1 (ただし, ∀k, xk ∈ S )について, lim f(xk) = f(x) k→∞ が成り立つ これらの定義が同値であることを示しなさい. つまり,「定義 1 が真ならば, 定義 2 が真である」という 命題と「定義 2 が真であるならば, 定義 1 も真である」という 2 つの命題を示しなさい. この問題が分からないので教えてください教えてください

  • 整数の問題(高3)

     【問題】 (x1)^3 + (x2)^3 + ・・・ +(xn)^3 が6で割り切れるとき、  x1 + x2 + ・・・ + xn も6で割り切れることを証明せよ。但しxkは自然数。 (x1は xかける1 じゃなくて えっくすわん です)     んで、解答はあるんだけど、自分で解こうと思ったときに「こんなんじゃ駄目かぃな」と思って考えてたんですけど、やっぱ駄目でした。もしこの考え方で解けるなら続きをお願いします。  【自分的解法】f(xk)=(x1)^3 + ・・・ +(xn)^3 とおくと    f’’(xk)=6(x1 + x2 + ・・・ + xn) (以下不明)   全くの見当違いだと恥ずかしいんですが、このまま解けたらなんか問題集の解答に勝った気分になれるので・・・。   見当違いだったら 「全くの見当違いです。解答の通りときなさい」と一言お願いします。  

  • 単射の定義

    基本的な質問です. 数学の本のいくつかの本に単射の定義が出ていました. 集合GとG'の間に写像fがあり,Gの点x,yのそれぞれ写像の点,x',y'があるときx≠yであるとき,x'≠y'であるとき単射であるという. この定義には,写像fが一価であることを定義の要件として必ずしも明示されていない(一価であるのならばこのような定義は入らない)ようなので,次のように考えた場合矛盾があるでしょうか.いいかえれば,単射の定義としては,x≠yであるとき,x'≠y'であるだけでなく,逆のx'≠y'であるときx≠yの条件も併せてつけるべきではないでしょうか. Gの点xに対して,x1',x2'が,yに対して,y1',y2'に対応し,x≠yであるとき,x1',x2y1',y2'がいずれも異なる場合の写像は,上の定義だと単射といえるのではないでしょうか

  • 写像に関する問題

    f : A→Bを集合間の写像とし、g : 2^B→2^Aを   g(X)=f^-1(X) とする。ただし、Bの部分集合Xに対して、 f^-1(X)は、f : A→Bに関するXの逆像   f^-1(X)={a∈A|f(a)∈X} で定義されるAの部分集合とし、集合Aに対して、 2^AはAの部分集合全体とする。 (1)fが全写なら、gは単写 (2)fが単写なら、gは全写 であることを示せという問題ですが、 (1)   X1≠X2のとき、g(X1)≠g(X2)となることを示す。 X1,X2∈2^Bとし、X1≠X2とする。また、x1,x2∈Aとすれば、fは全写であるので、f(x1),f(x2)∈B。ここで、f(x1)∈X1,f(x2)∈X2とすれば、 ここで、X1≠X2より、x1≠x2。従って、g(X1)≠g(X2)となり、gは単写。 (2)  任意のX1をとったとき、g(X1)∈Aとなることを示す。 fは単写より、f^-1(x1)∈Aとなるような元x1∈X1が存在する (ただし、X1⊂B)。従って、写像gの定義より、 常にg(X1)∈Aとなるような元g(X1)が存在する。従って、gは全写。 上記のように考えたのですが、この考え方であっているのでしょうか? お手数ですが、どなたかご指南いただけないでしょうか? よろしくお願いします。