• ベストアンサー

数三の数列の極限値の性質について

数列の極限値の性質に 数列{An}{Bn}が収束して lim An=α lim Bn=β(ここに書くlimの下にはすべてn→∞があると考えてください) とするlim An/Bn=αβとあり、 この法則を使って lim √(n+2)-√n/√(n+1)-√n を解こうとしました で、lim √(n+2)-√n=0となったので lim √(n+2)-√n/√(n+1)-√n=0 としたのですが、答えは2です この考え方はどこがいけないのかわからないので わかる方教えてもらえませんか?

noname#141254
noname#141254

質問者が選んだベストアンサー

  • ベストアンサー
  • owata-www
  • ベストアンサー率33% (645/1954)
回答No.3

>有理化する際のポイントみたいなのってありますか? ポイントと言えるかどうかは分かりませんが、0/0or∞/∞の形にならない所まで(つまり、定数にできる所まで)やればOKです(そのために有理化するのですから)。 今回は lim [n→∞]{√(n+2)-√n}/{√(n+1)-√n} のままの形では、0/0の形でダメです。そして、有理化していって lim[n→∞] 2/1×{√(n+2)+√n}/{√(n+1)+√n} これは有理化する必要はありません。なぜなら lim[n→∞] {√(n+2)+√n}/{√(n+1)+√n} =lim[n→∞][n*{√(1+2/n)+√1}]/[n*{√(1+1/n)+√1}] =lim[n→∞] n/n(=1)*{√(1+2/n)+√1}/{√(1+1/n)+√1} =1 となります。 正直、これはある程度経験が必要だと思いますが、無理数なら大体足し算が出てくればOKです。

noname#141254
質問者

お礼

ありがとうございます もっと問題を解いていって経験積んでいこうと思います 丁寧に解説していただいてありがとうございました

その他の回答 (2)

  • owata-www
  • ベストアンサー率33% (645/1954)
回答No.2

lim [n→∞]√(n+1)-√n=0なので0/0の形となり、このままでは解けません。 解くには有理化です。 lim [n→∞]{√(n+2)-√n}/{√(n+1)-√n} =lim[n→∞]{√(n+2)-√n}{√(n+2)+√n}/{√(n+2)+√n} ×{√(n+1)+√n}/{√(n+1)-√n}{√(n+1)+√n} =lim[n→∞][{√(n+2)}^2-(√n)^2]/{√(n+2)+√n} ×{√(n+1)+√n}/[{√(n+1)}^2-(√n)^2] =lim[n→∞] 2/1×{√(n+2)+√n}/{√(n+1)+√n} =lim[n→∞] 2/1*n/n*{√(1+2/n)+√1}/{√(1+1/n)+√1} =2 です。

noname#141254
質問者

補足

有理化する際のポイントみたいなのってありますか? 有理化を止めるところがどこかがあまりよくわからないのです・・・ 最後から二番目の式の lim[n→∞] 2/1×{√(n+2)+√n}/{√(n+1)+√n} も有理化していかなくていいのかと考えてしまうのです。

  • masa072
  • ベストアンサー率37% (197/530)
回答No.1

性質を勘違いしています。 分母の{Bn}が0に収束しないことが必要です。 また,∞-∞は0ではありません。 従って分子・分母両方を有理化することが必要です。

noname#141254
質問者

お礼

教科書に書いてる解説って結構 適当なのが多いんでしょうかね(汗 回答ありがとうございました

関連するQ&A

  • [高校数学III]数列の極限値

    an=(-1)^n/n の極限値を求めよ。 という問題ですが、自分は (-1)^n/n=(-1)^n*1/n lim[n->∞]1/n=0より lim[n->∞]an=0 と解答したのですが、この解答で問題ないでしょうか? 数列が積の形に分割でき、その片方の極限が0に収束すれば、数列全体の極限も0に収束すると言えるのかどうか、いまいち分からず困っています。 ちなみに模範解答は -1≦(-1)^n≦1 をnで割って挟みうちの原理を使っています。

  • 減少数列と極限

    ある減少数列(an≦an-1となる数列かつ詳細なanの式は出せない)がありかつすべてのnについてan≧bとなる実数がある時その数列のn→∞の極限は収束すると言えますか?例外があるかわからなくなりました

  • 極限値の問題です

    以下の極限値を求める計算をしたのですが、 あっているか自信がありません。 詳しい方がいらっしゃいましたら、ご指導お願いします。 【問題】 一般項anが、次で与えられる数列{an}について、個々の収束・発散を調べ、収束する場合にはその極値を求めよ。 (1) 2^n (答)lim[n→∞] 2^n = ∞より、発散する。 (2) (2n^2+1)/(n^2+3) (答)lim[n→∞] (2n^2+1)/(n^2+3) =lim[n→∞] {2(n^2+3)-5}/(n^2+3) =lim[n→∞] { 2(n^2+3)/(n^2+3) - 5/(n^2+3) } =lim[n→∞] { 2 - 5/(n^2+3) } より、2に収束する。 (3) √(n+1)-√n (答)lim[n→∞] √(n+1)-√n =lim[n→∞] {(√(n+1)-√n)(√(n+1)+√n)}/(√(n+1)-√n) =lim[n→∞] (n+1-n)/(√(n+1)-√n) =lim[n→∞] 1/(√(n+1)-√n) また、lim[n→∞] 1/n = 0より、 √(n+1)-√nは、0に収束する。 以上、よろしくお願いします。

  • 数列の極限問題

    a,bを2つの正の定数とし、数列{an},{bn}を次のように帰納的に定義します。 a1 = a, b1 = b, an+1 = (an + bn)/2, bn+1 = √(an x bn) (n = 1,2,...) このとき、 (1) a >= bならば   a1 >= a2 >=....>= an >=...>= bn >=.....>= b2 >= b1 が成り立つことを証明してください。 (2)数列{an},{bn}は同じ極限値に収束することを証明してください。 よろしくお願いします。

  • 数列の収束と極限の問題

    数列の収束と極限の問題 はじめまして。最近数学を少し勉強し始めた者です。 頭の出来が良くない故、また独学故に多く質問させて貰うかもしれませんがよろしくお願いします。 a[1] = root(2), a[n+1] = root(2a[n])で定義される数列{a[n]}が収束することを証明し、極限値lim a[n] を求めよという問題なのですが、分かりません。 収束は、ダランベールの判定法を使おうと思い、lim a[n+1]/a[n] = lim root(2a[n])/a[n] = lim root(2/a[n]) まで求めたのですが、これが1より小さいことが分かりません。 極限値のほうは全然です。 どなたかご助言お願いします。

  • 極限の問題です!

    [An(nは自然数)をAn>0である数列であるとして、lim(n→∞)A(n+1)/An=Lのとき、(1)L<1ならAnは収束しlim(n→∞)An=0,(2)L>1ならlim(n→∞)An=∞]であることを使って、 ()n/2^n ()n/b^n (bは0でない) の極限を求めたいのですがわかりません(泣)アドバイスお願いします。

  • 極限値を求めたいのですが、教えてください

    次のような極限値を求める問題ですが、次の数列の収束・発散を調べ、収束する場合にはその極限値を求めよという問題です。   (1)lim(n→∞)  1+(-1)^n   (2)lim(n→∞)  √(n^2 +1) - √(n^2 -1)

  • 数IIIの数列の極限に関して

    a[1]=5 , a[n]=(13a[n-1]-15)/4(a[n-1]-1) (n≧2)で与えられる数列 がn→∞で発散か収束か調べ、収束するならば極限値を示せという問題なんですが とりあえずlim[n→∞] a[n]=∞と考えると a[n]=13/4 - 1/2(a[n-1]-1) より 左辺=∞ 右辺=13/4 となって矛盾するので収束するだろうなということは分かったんですが、 その後収束値をどう出せばいいか分かりません。 どなたかご教授願います。

  • 数列の極限の証明

    「a1=a,b1=b,(a>b>0) a(n+1)=(an+bn)/2 b(n+1)=anbn^1/2 で定まる二つの数列{an},{bn}は同じ極限値を持つことを示せ。」 という問題を解いていて、このリンクの証明を見たのですが、 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1463528674 証明の最後で、a_n+1=ka_n を満たす1より小さい正の実数kが存在することから、 a_n=k^(n-1)*a1 として、n→∞でa_n→0としていましたが、 a_n=f(n)として、f(x)が単調減少関数でf(n+1)=k_n(fn) (k_nはnによって変化する1より小さいある正の定数)となっても、 k_nはnに依存するので、必ずしもx(またはn)→∞でf(x)(またはf(n))→0になるとは限らないのではないのでしょうか。(ex. k_n→1 (n→∞), f(x)=(1/x)+(1/2)) その可能性はないのでしょうか? 以下がリンク先の証明の全文です。 与えられた漸化式と0<a<bより帰納的に0<an,0<bnとなる。 すると相加・相乗平均の関係より a(n+1)/b(n+1)=(an+bn)/2√(anbn) =(1/2){√(an/bn)+√(bn/an)}≧(1/2)*2*√(an/bn)*√(bn/an) =1 ∴b(n+1)≦a(n+1)となる。 ここで等号が成り立つとすると bn=anより a(n+1)=(1/2)(an+bn)=(1/2)*2an=an となり an=a(n-1)=…=a1=a=b1=b となりa<bに矛盾する。 よって等号は成立しないので b(n+1)<a(n+1) となり、したがって bn<an…(*) となる。 すると an+bn<2anより a(n+1)=(1/2)(an+bn)<(1/2)*2an=an となる。 したがって0<anより a(n+1)=k*an を満たす1より小さい正の実数kが存在する。 すると an=k*a(n-1)=k^2*a(n-2)=…=k^(n-1)*a1=k^(n-1)*a となるから lim[n→∞]an=a*lim[n→∞]k^(n-1)=0…(**) となる。 すると(*)と0<bnより 0<bn<an だから(**)からはさみうちの原理により lim[n→∞]bn=0 となる。 よって lim[n→∞]an=lim[n→∞]bn=0 となる。

  • 数列・関数の極限について

    俗に言う「はさみうちの原理」とその周辺に関して質問があります。 数学IIIの教科書によると, すべての自然数nに対し a_n ≦ b_n ≦ c_nのとき lim{n→∞}a_n = lim{n→∞}c_n = α(定数) ⇒ lim_{n→∞}b_n = α lim{x→∞}f(x) = lim{x→∞}h(x) = α(定数)とする。 十分大きいxに対し,f(x) ≦ g(x) ≦ h(x) ⇒ lim_{x→∞}g(x) = α となっております。 (1)limを登場させる順番がなぜ違うのか?   数列の極限の方ではまず不等式を記し,関数の極限の方ではlimから記しています。 (2)「すべての」と「十分大きい」の部分は数列の極限と関数の極限で異なるか?   数列の極限の方でも「十分大きい自然数nに対し」でもよいような気がするのですが…。 以上、よろしくお願いします。