• ベストアンサー

ある振動についての運動方程式について質問させていただきます

初めて質問させていただきます。 振動工学で、ふれまわり運動という現象があります。 ある円盤型の回転体(図形的中心:図心と重心にズレがあるもの)の図心に軸を通し、軸が回転すると図心と重心のズレにより遠心力が発生し、軸がたわみながら回転するというものです。 回転前の図心を原点(円の中心)としてxy平面をとり、ここで成り立つx方向y方向それぞれの運動方程式なんですが m*(d^2x/dt^2) + d*(dx/dt) + k*x = m*e*(dθ/dt)^2*cosθ + m*e*(d^2θ/dt^2)*sinθ m*(d^2y/dt^2) + d*(dy/dt) + k*y = m*e*(dθ/dt)^2*sinθ - m*e*(d^2θ/dt^2)*cosθ m:回転体質量 d:xy方向の減衰定数 k:軸の弾性(ばね定数のように扱う) e:図心と重心の距離 θ:軸に対する回転体の回転角 x,y:x方向y 方向への変位 左辺第1項から加速度による力、減衰による力、ばねの復元力、右辺第1項は遠心力による力までは理解できるのですが、右辺第2項の力の物理的な意味がよくわかりません。 少々わかりずらい説明ではありますが、回答よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

「右辺第2項の力の物理的な意味」は回転角速度の変化速度、すなわち角加速度による回転軸接線方向の慣性力(のx、y方向成分)と解釈できます。

ki-bouT
質問者

お礼

ご返答ありがとうございました。 大変参考になりました。

その他の回答 (1)

noname#96418
noname#96418
回答No.1

重心の運動方程式を考えたらどうでしょう。 重心の x 座標を X = x + e cosθ として、時間微分 d/dt を D で表すと DX = Dx - e sinθ Dθ DDX = DDx - e cosθ(Dθ)^2 - e sinθ DDθ です。 これに質量を乗じたものが、復元力 - k x と減衰力 - d Dx に等しいということではないでしょうか。

ki-bouT
質問者

お礼

ご返答ありがとうございました。 重心の運動方程式をたてるとわかりやすいですね。 参考になりました。

関連するQ&A

  • 剛体棒の運動方程式

    剛体棒の運動方程式でわからない点があります。 XY平面で長さL、質量M、密度が一様な剛体棒が原点を支点とし振り子運動を行う時、 剛体棒とY軸のなす角度をθとおくと Iβ=(-MgL/2)sinθ      (Iは慣性モーメント、βは角加速度) だと思うのですが、 問いで「重心まわりの回転についての運動方程式をたてよ」とあった場合 Igβ=0     (Igは重心を軸とした時の慣性モーメント) でよろしいのでしょうか? 重心にはモーメントが働いていないと思ってこのように考えているのですが・・ また「重心の並進運動についての運動方程式をたてよ」とあった場合、 M (d^2X/dt^2)=0 M (d^2Y/dt^2)=-Mg でよろしいのでしょうか? 慣性モーメントの計算は割愛しましたが、どなたか御教授して頂ければ幸いです。

  • 極座標での運動方程式

    質量mをもつ質点の、時刻tにおける位置ベクトルをr↑(t)とする。 運動方程式は、ベクトル形式でm(d^2r↑(t)/dt^2)=F↑(r↑(t),t)と表せる。 x軸、y軸方向それぞれの単位ベクトルをex↑,ey↑とする。 動径方向、角度方向の、それぞれの単位ベクトルをer↑、eθ↑とする。 er↑、eθ↑をex↑,ey↑、θでそれぞれあらわせ。 全くわかりません。 詳しい解説お願いします。

  • 運動方程式

    運動方程式について質問があります。 図を掲載してはいけなく、非常にわかりにくいと思いますがお願いします。 例えば、x座標を下向きにとった場合、できた運動方程式を mg-m(d^2x/dt^2)=0とします。 逆に、x軸を上向きにとった場合、運動方程式は -mg-m(d^2x/dt^2)=0となるのでしょうか?? 自分的には、x座標の正負がかわったのだから -mg+m(d^2x/dt^2)=0となるようなきがするのですが・・・ 初歩的な質問で申し訳ないです。

  • 固定されたデカルト座標での運動方程式

    質量mをもつ質点の、時刻tにおける位置ベクトルをr↑(t)とする。 運動方程式は、ベクトル形式でm(d^2r↑(t)/dt^2)=F↑(r↑(t),t)と表せる。 x軸、y軸方向それぞれの単位ベクトルをex↑,ey↑とする。 時刻tにおける質点のデカルト座標をx(t),y(t)とする。 m(d^2r↑(t)/dt^2)=F↑(r↑(t),t)を(…)ex↑+(…)ey↑=0の形に整理し、運動方程式を求めよ。 d^2r↑/dt^2 = (d^2x/dt^2)ex↑ + (d^2y/dt^2)ey↑を使うと思うのですが、代入してからどうすればいいですか? 詳しい解説お願いします。

  • 運動方程式の成分表示

    運動方程式の成分表示 ある物体の運動方程式 Ma=F を成分表示にする問題ですが、 どのような状態が成分表示なのか分かりません。とりあえず、自分でやった解答を載せます。 (解答) F=Xi+Yj+Zk (ただし、i,j,kは各方向の単位ベクトルとする。)とおく。 F=Ma F=M(d^2X/dt^2 i+d^2Y/dt^2 j+d^2Z/dt^2)-(1) 任意のベクトルAにおいて、 A=(Ax,Ay,Az)A より(1)から F=(d^2X/dt^2 ,d^2Y/dt^2 ,d^2Z/dt )A より この運動方程式の各方向の成分は (X方向)=d^2X/dt^2 (y方向)=d^2Y/dt^2 (z方向)=d^2Z/dt^2

  • 物理運動方程式について

    高3で物理勉強しています。 運動方程式の原則について疑問があります。 「x軸方向とy軸方向に分けて計算する。x軸方向は運動方程式。y軸方向は釣り合いの式で計算する。」とあります。 例えば写真の式だと、 x軸方向ma=-mgsinθ y軸方向N=mgcosθ x軸方向では反対の力を負で表している。 なのにy軸方向では反対の式も正で表している。 式の名前が違うのはわかっていますが、違和感を感じずに入られません。 なぜこのような立式になるのでしょうか。

  • 角運動量と力のモーメントの関係が分かりません

    質量Mの剛体が並進しながら、並進方向に垂直な一軸まわりに回転している場合を考える。重心を通る回転軸Aまわりの慣性モーメントをIaとする。この回転軸aと平行でhだけ離れた軸Bまわりの慣性モーメントをIb(=Ia+Mh^2)とする。また、剛体に働く軸A、Bまわりの力のモーメントをNa、Nb(NaとNbは独立)、軸A、Bまわりの角速度をωとする。(速度、力のモーメントはベクトルとします。) 手元の本には、「ある定点まわりの全角運動量Lと力のモーメントNについて (1) dL/dt = N が成立する。また、この関係は重心まわりについても成立する。」 とあります。だから、剛体が並進していても (2) Ia(dω/dt) = Na は成立する気がします。 ここで質問です。 もし、軸bが静止していれば、 (3) Ib(dω/dt) = Nb は成立しますか? また、軸bが並進していた場合も 式(3)は成り立ちますか? よろしくお願いします

  • 力学の問題を教えてください

    図のような半円板で,外力Fを取り除くと半円板は振動をします. この半円板の重心周りの回転モーメントをIとしたときの問題です. 「この半円板が任意の角θだけ傾いているとき, 初期角θ0の姿勢から失った位置エネルギP と, 重心の並進運動エネルギおよび回転運動エネルギの和 Uを, 重心の X, Y軸方向 の速度成分dx/dt, dy/dt, 重心の角変位θと角速度 dθ/dt, M, g, Iを用いて表わせ」 「振動の運動方程式をたて,dθ/dt≠0の場合に,エネルギ保存式を時間で微分すると運動方程式が得られることを示せ」 というものです. 宿題で出たのですが,さっぱり分からないので解き方を教えて欲しいです.

  • 固定されたデカルト座標での運動方程式

    質量mをもつ質点の、時刻tにおける位置ベクトルをr↑(t)とする。 運動方程式は、ベクトル形式でm(d^2r↑(t)/dt^2)=F↑(r↑(t),t)と表せる。 x軸、y軸方向それぞれの単位ベクトルをex↑,ey↑とする。 時刻tにおける質点のデカルト座標をx(t),y(t)とする。 r↑(t)をx(t),y(t)で表せ。 r↑=xex↑+yey↑    ここからどうすればよいのですか? 詳しい解説お願いします。

  • 1自由度振動系の運動方程式の解法について

    mを質量 cを減衰係数 kをバネ定数 (dx/dt)^2 をXをtでの2階微分とします。 今 m(dx1/dt)^2+c{(dx1/dt)-(dx0/dt)}+k(x1-x0)=0 という運動方程式で表される1自由度線形振動系があるとします。 この運動方程式を解くとき、 x0=Xsinωt x1=Ysin(ωt-φ) としたとき、上の二つの式を直接運動方程式に代入して解き、Y/Xを導く場合どうしてもφやsinやcosのせいで綺麗に解くことができません。 こういう場合に必要なテクニックなどあれば教えていただきたいです。 よろしくお願いします