• ベストアンサー

真空の誘電率って常に一定なのでしょうか?

誘電体の分極率を表す式としてD=εEというものがありますが、 これって真空中でも通用する式なのでしょうか? つまり真空に電場をかけたとして真空分極(って呼ぶのでしょうか?)みたいなものは起こるのでしょうか? もし起こるとしてこれって上式のように電場に対して線形なのでしょうか?

noname#66261
noname#66261

質問者が選んだベストアンサー

  • ベストアンサー
  • ojisan7
  • ベストアンサー率47% (489/1029)
回答No.2

古典物理では真空分極というものは考えません。D=εE=ε0+Pですから、真空ではP=0ですよね。 >>真空の誘電率って常に一定なのでしょうか? 一般の誘電体の誘電率は内部を通過する電磁波の周波数に依存します。ですから、誘電体の内部では光の分散が起きるのです。しかし、真空中では光の分散がありますか?光速度は周波数に依存せず一定ですよね。真空中で赤色の光と、青色の光の速さが違うという話は聞いたことがありません。このことはε0が常に一定であることを意味しています。

noname#66261
質問者

お礼

教科書には ε=ε0+P/Eと書かれてあるのですが、やっぱり第1項が真空分極を表しているように思えるのですが・・・

その他の回答 (1)

  • watch-lot
  • ベストアンサー率36% (740/2047)
回答No.1

誘電体と誘電体の間が真空である場合は成立します。 (真空そのものは誘電体ではありませんから) この場合の電場は、誘電体の比誘電率によって線形とはなりません。

関連するQ&A

  • テンソル、分極、電気感受率について

    電場Eを与えた時、分極(P)は、 P =P(0)+e0(c(1):E+c(2) : :EE+c(3) : :EEE+…) と表すことができ e0は真空中の誘電率。 P(0)は静的な分極。 c(1)は1次の電気感受率、2階のテンソル。 c(2)は2次の非線形感受率、3階のテンソル。 c(3)は3次の非線形感受率、4階のテンソル。 とあるでのすが、2階、3階、4階のテンソル?? 式中の「: :」の記号はなに?? と、私の頭では何を表しているのかチンプンカンプンです。 テンソルと分極について、 また、この式が何を意味しているのか教えてください。 よろしくお願いします。

  • 誘電体の中に誘電体がある場合について

    比誘電率ε_2の大きな誘電体の中に比誘電率ε_1の誘電体の球(半径R)が埋め込まれていて,全体に対して外から+x方向を向いた一様な電場E_0がかかっている.このときの誘電体球の内部の電場を求めよう. 2種類の誘電体の内部での電荷密度はゼロなので,各誘電体の内部での電位(r)はラプラス方程式△V(r)=0の解である.境界面に分極電荷が現れるが,分極電荷の作る電場は遠方ではゼロになる.そこで,前節の例を参考にすると,電位はV(r)=-(E_0)rcosθ+acosθ/r^2 (r>R) a:定数 , V(r)=-E_1rcosθ (r<R)という形をしていることがわかる.(ここでは電位がこのようになるとしておいてください,この式が成立するというのはわかります) cosθ/r^2という形の項は球の中心で無限大になるので,誘電体球の内部の解には含まれていない.したがって,誘電体球の内部の電場E_1は外部からかけた電場E_0に平行で一様であることがわかる. まず一つ目の質問なのですが,なぜここでE_1とE_0が平行で一様であるということがわかるのでしょうか? 式が成立するのはわかりますが,なぜこの事実が言えるのかということがわかりません. また本の続きですが,2種類の誘電体の境界面(r=R)に分極電荷が存在するので,境界面で電場は不連続であるが,電位は連続なのでa=(E_0-E_1)R^3という関係が得られる. 2種類の誘電体の境界面で電束密度の外向きの法線方向成分D_n=(ε_r)(ε_0)E_n=-(ε_r)(ε_0)∂V/∂r・・・(1)は連続なので(ε_1)E_1=ε_2(3E_0-2E_1)・・・(2)という式が導かれる. E=-gradVというのはわかるのですが,なぜE_n=-∂V/∂rというようにr方向のみに依存しているということがわかるのですか? この場合,電場はθ方向などにも依存するのでは・・・. また,(1)が成り立つと認めた場合に(2)をどのようにして導いたのかがよくわかりません. 分かる方がいらっしゃいましたら教えていただけると本当に助かります. よろしくお願いいたします.

  • 導体の誘電率

     導体の内部静電場が0になる事は、ふつう最小エネルギー定理からかな?、と思うのですが、この解法は電荷移動の過渡過程を考えていません。それで自由電子モデルを使って、少しだけ過渡過程を考えてみました。  孤立した導体に外部電場がかかるとOhmの法則から、自由電子が移動を始めますが、誘電体のイメージと重ねると、誘電体では原子や分子から出て来ない電子が自由電子として飛び出してきて、外部電荷を完全に打ち消すような表面電荷になると思えます。 (実際には飛び出さずに、電子軌道を乗り換えるだけですが)  よって導体は電気感受率∞の誘電体ですが、逆にそうなると、電荷分極が起こるより先に内部電場が消えてしまって、表面に移動した自由電子を除き、残りの部分は電子軌道のランダム乗り換えで拡散し、結局分極はほとんど起こらないような気がします。  という訳で理想化すれば、導体の誘電率は真空の誘電率ε0に等しいという話になります。この意味は、電束に関する微分形のガウスの法則を表面電荷に対して、導体表面の法線方向のデルタ関数を使って、強引に電場で書いてやった場合、そこに登場する物質の誘電率が、ε=ε0という意味です。  しかしこのサイトのいくつかのQ&A(金属の誘電率)を読むと、周波数0の直流に対応するような電場の場合(まさにいま考えている外部電場)、誘電率は「-」という記述が見られます。上記のようなモデルは、やっぱり粗すぎるのでしょうか?。  それとも誘電率は「-」とは、電磁場の方程式系を正直に解いた場合に、結局定常状態では電場は導体内部に侵入できないという事を表す記述なのでしょうか?。適切に誘電率「-」ならば、導体内電場なしと解釈できるので。  よろしくお願いします。

  • コンデンサーに挿入された誘電体内の電場の大きさについて。

    誘電体内の電場の大きさは、 E = (σ-σp)/ε0 σ:コンデンサーの極板にある電荷の面密度 σp:誘電体にある電荷の面密度 ε0:真空の誘電率 とあります。で、この式の理由が真空中のE = σ/ε0に対して、誘電体中ではσのかわりにσ-σpとなるから、とあるのですが、なぜ誘電率は真空のものを使うのでしょうか? 誘電体内を考えるのですから、変わってくるのではないでしょうか?

  • コンデンサーに誘電体挿入時の比誘電率について

    某大学の過去問で質問です。模範解答は納得できるのですが、自分のやり方も同じ答えになりそうだけどならないので教えていただければと思います。 図のようにコンデンサーの中に誘電体が挿入されています。コンデンサーの極板AにQの電荷、極板BにーQの電荷がたまっています。誘電分極によって誘電体の極板A側にQ’、極板B側に-Q’の電荷がたまるとして、誘電体の比誘電率εrをQとQ’を用いてあらわす問題です。(ただしコンデンサーは一辺がaの正方形の形をしている) 模範解答では、まず、誘電体の電場を求めると、電荷Qの作る電場と電荷Q’の作る電場の重ね合わせより E'=(Q+Q')/(ε0a^2)・・・(※) となり、比誘電率の定義から εr=E/E'=Q/(Q+Q') となり、納得はできます。 ここで私は一つずつ段階をおって計算してみました。 ※式の電場を出した後、誘電体の電位差V’をだし V'=d'E'=(d/3)(Q+Q')/(ε0a^2) とし、 C'=Q'/V'=Q'(ε0a^2)/{(d/3)(Q+Q')} C=ε0a^2/(d/3) よって εr = C'/C=Q'/(Q+Q') となり、模範解答と異なってしまいます。この考えでどこが間違っているのかご教授いただければと思います。よろしくお願いいたします。

  • 完全導体の誘電率

    完全導体の場合、分極が生じませんから、「完全導体の誘電率」は真空の誘電率に等しいと考えて良いのでしょうか?  意外とテキストには書いてなかったりします。

  • 真空の誘電率とその他について

    誘電率についての考え方がわかりません。 教科書を見ても「真空の誘電率をε0としたとき」としか書いてません。 クーロン力の式から考えれば、 2つの点電荷の間が真空状態の時と 点電荷の間に何かがある時に及ぼしあう力ということになるのでしょうか? もしそうだとしても納得できません。 単なる係数だとしてもなんかひっかかります。。

  • 誘電体中の導体、分極電荷などについて。

    【導体が誘電率εの誘電体に囲まれているとき、真電荷の面密度ρとすると、 1:導体表面の前方の電場 2:分極電荷の面密度 はいくらか】 という問題があるのですが、真電荷というのは、導体の表面にある電荷のことですよね。その電荷に引き寄せられてマイナスの電荷が全体として導体の方を向いている、そのマイナス分を分極電荷という、と思います。(そういう理解です。) 質問なのですが、この「2」の出し方が分かりません。「1」は導体表面に微小面積dsをとって、電荷ρdsが作る電場…という具合に解いていくと思うのですが、「2」の方はよく分かりせん。解答を見ると、分極による表面密度をpとすると EdS = 1/ε0(ρdS+pdS) と式を立てているのですが…。なぜ「1」で求めたEをそのまま使っているのか分かりません。このEは表面の電荷だけが作ったEだから、分極電荷を式に入れたら、また違うのでは…?という曖昧な感じです。 導体の表面の電荷と分極電荷と電場の関係がよく分かりません。 よろしくお願いします。

  • 誘電体内の電界が分かりません

    「真空中の誘電率をε0とする。面積Sの2枚の金属版が間隔dで置かれている並行平板コンデンサがある。このコンデンサにVの電圧を印加している時の平板間の電界をE0とする。今、電圧を印加したまま、比誘電率εsの誘電体を、平板間を満たすように挿入すると、(電源から新たに電荷が供給される前の)平板間の電界はEとなった。誘電体内で静電誘導が起こったことによって発生する内部電界をEpとおくと、   E = E0 - Ep (1) が成り立つ。ここで分極ベクトルを考えると、その大きさは平板における分極電荷(面積)密度σpとなる。よって電気感受率Xを用いると   σp = ε0XE (2) で表せる。この式を(1)に代入すると   σp/(ε0X) = E0 - σp/ε0 (3) となるから、   σp = ε0XEo/(1+X) (4) となる。」 という説明があるのですが、なぜ(3)式右辺の第二項がσp/ε0になるのか分かりません。 真空中に存在する導体について、その表面電荷密度がσであるなら、表面での電界は、その点に垂直な方向にσ/ε0である。ということはガウスの法則から導かれると思うのですが、なぜ比誘電率εsの誘電体内において電界Epがσp/ε0となるのか分かりません ご回答よろしくお願いします

  • 誘電体の形における誘電率の変化

    2種類の誘電体の界面に分極電荷を考えるとき、2つの誘電体の誘電率がε1、ε2のままであるかどうか教えてください。つまり、ε2の形を変えて挿入した際、誘電率に変化は生じるかどうかってことです。