• ベストアンサー

行列の固有値があっているかどうか確認する方法はありますか?

行列の固有値があっているかどうか確認する方法はありますか? 固有値から固有ベクトルを求めようとしているのですが、なんだか計算が変になるのです。 ちなみに行列Aは (4 -1 -1) (3 0 -1) (3 -1 0) で固有値が±1,4と出ました。 固有ベクトルの次元(固有ベクトル空間のサイズ?)っておそらく3以上にはなりませんよね?

  • MSot
  • お礼率11% (2/17)

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

定義に戻って, 行列 A - λI の行列式が 0 になれば λ は A の固有値. ちなみにですが, 手元の電卓は固有値として 1, 1, 2 を主張してます.

その他の回答 (1)

  • jmh
  • ベストアンサー率23% (71/304)
回答No.2

tr は?

関連するQ&A

  • 3×3行列の固有値と固有ベクトル

    以下の行列Aの固有ベクトルを求めようとしているのですが,解を見つけられないでいます. 2 1 0 1 2 0 0 0 -2 計算を進めた結果,固有値λは3,1,-2となり,λ=3,1に対応する固有ベクトルはそれぞれ[1,1,0]t,[1,-1,0]tとなったのですが,λ=-2の場合で求めた固有ベクトル[1,1,k]t(kは任意の実数)がAx=λxに対応しない値になってしまいます.私の計算に何か問題があるのでしょうか? また,行列Aは対称行列なのでそれぞれの固有ベクトルの内積は0になると思うのですが,固有ベクトルの値が得られないことと何か関係があるのでしょうか? 回答よろしくお願いします.

  • 3×3行列ジョルダン標準正規

    ジョルダン細胞の数と次数の考え方。 間違っていたら指摘して下さい。 3×3行列について (1)固有値が3つ異なる場合 α≠β≠γ それぞれの固有空間の階数(rank)は、2なので、それぞれの固有空間の次 元は1次元。 従って、ジョルダン細胞の次元は1次。1つの固有値に対するジョルダン細胞の数も1個。 J=J(α,1)+J(β,1)+J(γ,1) (2) 固有値が3重根の場合 (1)固有空間のrankが2の場合 固有空間の次元は、3-2=1次元。 固有ベクトルは、1つだけ。 よってジョルダン細胞は1個。 行列が3次なので、3次のジョルダン細胞が1個。 J=J(α,3) ここで、(A-αE)^2≠0、(A-αE)^3=0になるが、この計算は不要。 (2)固有空間のrankが1の場合 固有空間の次元は、3-1=2次元。 2次元上で独立な固有ベクトルは、2つ以上取れる。 ジョルダン細胞の数は2個。 3次元行列であるから、2個のジョルダン細胞は、2次1個と1次1個になる。 よって、J=J(α,1)+J(α,2) (3)固有値が2個が重根、1個単根の場合。 固有値=α(重根)、βとする。 (1)αに対する固有空間のrankが2の場合 固有空間の次元は、3-2=1次元。 ジョルダン細胞の数は1個。 1次元だからαの固有ベクトルは1個だけ。 βは単根だから、固有空間の次元は1次元で固有ベクトルは1個だけでジョルダン細胞の次元も1次。3次元行列だから、αに対するジョルダン細胞の次数は、3-1=2次元でなければいけない。 よって、J=J(α,2)+J(β,1) (2)αに対する固有空間のrankが1の場合 固有空間の次元は3-1=2次元。 2次元なので、固有ベクトルは2つ以上取れる。 ジョルダン細胞は2個でそれぞれ1次。 βに対するジョルダン細胞は上記と同じ。 よって、J=J(α,1)+J(α,1)+J(β,1)

  • 行列の固有値と逆

    Aが有限次元の行列のとき、固有値は|λE - A|=0 を満たすλです。したがって固有値に1が含まれないとき |E - A|≠0 なのでE-Aが逆を持つことはすぐに分かります。Aが無限次元ヒルベルト空間の線形作用素のとき、固有値に1が含まれなければE-Aが逆を持つことはどのように証明したら良いでしょうか。フレドホルムは行列式の無限次元の極限を考えたりしたようですが、そのようにしてできるのでしょうか。

  • 正規行列の異なる固有値の固有ベクトルは直交する?

    Aを正規行列とすると適当な対角行列Λと適当なユニタリ行列Uが存在してU^*・A・U=Λである λとμを異なる固有値として Uの列ベクトルでありλの固有ベクトルであるベクトルが張るベクトル空間をPとし Uの列ベクトルでありμの固有ベクトルであるベクトルが張るベクトル空間をQとしたとき PとQは直交しλの固有ベクトルはPの元でありμの固有ベクトルはQの元であるから「λの固有ベクトルとμの固有ベクトルは直交する」 上の証明について質問します (1)結論は正しいですか? 正しければ (2)証明に穴はありますか? あれば (3)どのように証明したらいいでしょうか?

  • 行列空間と固有ベクトル

    簡単な問題なのかもしれないのですが,何度解いてもわかりません>< 3次元正方行列全体のなすベクトル空間をVとする。 行列A=((2 0 0)^t (0 -1 0)^t (0 0 -1)^t)として 線型写像f:V→Vをf(X)=AX-XA (X∈V)と定義する。 (1) E_13=((0 0 0)^t (0 0 0)^t (1 0 0)^t)   が固有ベクトルであることを示せ。 (3) 線型写像fに関して,固有値と対応する固有空間を全て求めよ。 という問題で,(1)を解いて,固有値の1つが3となったのですが,(3)で AX-XA=λXとして固有値を求めると,λ=0,±√3となってしまいます。。。 どなたか解説お願いします。

  • 共分散行列の固有値・固有ベクトルの行列

    以下のようなデータを用いて、共分散行列を生成するとします。 (各No.にはそれぞれx1~x5の5つのデータ) x1 x2 x3 x4 x5 No.1 [2 4 5 2 1] No.2 [3 10 8 7 9] No.3 [11 3 2 1 6] すると、共分散行列は3×3の正方行列になり、その固有値も3つ求まりますよね。 しかし、固有ベクトルに関してはデータがx1,x2,..,x5と5次元で考えているので、 ひとつの固有値に対して5つの成分を持つ固有ベクトルが求まりますよね。 よって、共分散行列の固有値行列は必ず正方行列になりますが、固有ベクトルの 行列は上の例の場合なら5×3行列(列は対応する固有値の数、行はベクトルの成分の数)となり、 必ずしも正方行列にはなりませんよね?そのあたりを教えて頂きたいと思います。 よろしくお願いします。

  • 行列の対角化 固有値を求める

    次の行列の固有値、固有ベクトルの作る行列Pを求めて、対角行列に変換せよ。 A= 7  4 -16 -6 1  12 2  2  -5 と言う問題で、 固有値を求めるとき、|A-λE|より (7-λ) 4 -16 -6 (1-λ) 12 2   2   (-5-λ) となって =(7-λ)(1-λ)(-5-λ)+(-6)*2*(-16)+2*4*12-・・・・ としてから展開すると、計算も大変で、そのあとの 因数分解もわかりません;; どうすれば、もっと簡単に固有値を求められるでしょうか? お願いします。

  • 行列の固有値問題について

    行列A={2,a,b 0,1,c 0,0,1}が対角化可能であるためのa,b,cに関する条件についてお尋ねします。 この行列の固有方程式の二重解である固有値1に対する固有空間の次元が2である場合に対角化可能であるということは理解できました。 しかし、これを満たすには行列E-Aのランクが3-2=1であれば良いらしいのですが、なぜこのような考え方になるのかがあまり理解できません。 この点についてのご教授をどうかよろしくお願い致します。

  • 固有ベクトルの逆行列が存在しない?

    行列A= (0,1,1) (1,0,1) (1,1,0) の固有値と固有ベクトルを求める(ただし各固有ベクトルの最大の成分は1となるようにする) 問題なのですが, 固有値λ=-1(重解),2 と求め 固有ベクトルをそれぞれ x=(x1,x2,x3)=(1,-1/2,-1/2),(1,1,1) と求めたのですが, 対角化行列P= (1,1,1) (1,-1/2,-1/2) (1,-1/2,-1/2) の行列式が0になってしまいPの逆行列が存在しないことになってしまいます。 これはどこかで計算ミスをしているのでしょうか? それとも固有ベクトルに逆行列が存在しないことはあるのでしょうか? 自分ではこれ以上見直しても分からないので 教えてくださると助かります。

  • 行列式(固有値・固有ベクトル)に関するご質問です.

    固有値と固有ベクトルを求める際に,通常一般的な理論の手順として,固有値を求めてから固有ベクトルを求めると思います.その際に固有値の表記法に関して疑念を抱いている私事ですが,基本的に2次元の固有値は正負に関係なく,数字の大小を比較後,表記し,固有ベクトルを解くと思うのですが,3次元になると固有値も固有ベクトルも解くところまでは普通に理解できるのですが,表記の最適な方法が理解できません.表記の方法に誤解が生じてしまうと,その後のAのn乗を求めて,元の行列式が正しいかどうかを求める際にも誤解が生じてしまうのです.言語を用いてですと,なかなか説明が難しいので,実際に数字を通して明記致します. 例1:( 1 0 -1 )    ( 1 2  1 )    ( 2 2  3 ) この固有値の解は,λ=1,2,3であることがわかります.<私が疑念を抱いているのはこの部分です. この解の表記を見る限り,私的におそらく3次元は数字の小さい順に並べるのだと推測しました. 固有ベクトルの表記は割愛させて頂きます. ですが,次の例を取り上げてみます. 例2:( 1 1 -1 )    ( 1  1 -1 )    ( -1 -1 3 ) この固有値の解は,λ=1,0,4であることがわかります. この解の表記法と前例の解表記法で異なっていることがわかると思います. 先述の通り,私的の仮定で,3次元では数字の小さい順に並べるとしたら,普通はλ=0,1,4になるのではないかと思います.なのに,解の表記がλ=1,0,4になる理屈が理解できません. また,2次元のAのn乗の求め方は理解できたのですが,例1のような3次元のAのn乗の求め方が理解できないので,過程を添えて回答をよろしくお願いします.