行列の問題について知っていますか?

このQ&Aのポイント
  • 質問者は行列の問題について知りたいとしています。
  • 具体的な行列の操作を示しており、逆操作を行うためには4次元マトリックスが必要であることを尋ねています。
  • さらに、質問者は逆操作と元の操作が一致するかどうかも尋ねています。
回答を見る
  • ベストアンサー

行列の問題

行列の問題なのですがどなたか分かる方はいますか? どなたか知恵を貸してください。見づらいのですがよろしくお願いします。 (x'',y'',z'',1)=(x,y,z,1) × 1 0 0 0 0 1 0 0 × 0 0 1 0 a b c 1 cosθ -sinθ 0 0 -sinθ cosθ 0 0 0 0 1 0 0 0 0 1 = (x,y,z,1) × cosθ sinθ 0 0 -sinθ cosθ 0 0 0 0 1 0 acosθ-bsinθ asinθ+bcosθ c 1 = xcosθ-ysinθ+acosθ-bsinθ xsinθ+ycosθ+asinθ+bcosθ z+c 1 ここで行った操作(平行移動→回転)を逆にしたときの座標を4次元マトリックスを用いて表すにはどうすればいいのですか? また、両者は一致するのですか?

質問者が選んだベストアンサー

  • ベストアンサー
  • info22
  • ベストアンサー率55% (2225/4034)
回答No.1

Y=(x'',y'',z'',1) X=(x,y,z,1) A= 1 0 0 0 0 1 0 0 0 0 1 0 a b c 1 B= cosθ -sinθ 0 0 -sinθ cosθ 0 0 0 0 1 0 0 0 0 1 とおくと Y=X*A*B=X*X1 > = (x,y,z,1) × > cosθ sinθ 0 0 > -sinθ cosθ 0 0 > 0 0 1 0 > acosθ-bsinθ asinθ+bcosθ c 1 この計算は間違っています。 正しくは X1= cosθ -sinθ 0 0 -sinθ cosθ 0 0 0 0 1 0 a*cosθ-b*sinθ -a*sinθ+b*cosθ c 1 です。 このためYも間違いになります。 > xcosθ-ysinθ+acosθ-bsinθ > xsinθ+ycosθ+asinθ+bcosθ > z+c > 1 正しいYは Y=X*X1= x*cosθ-y*sinθ+a*cosθ-b*sinθ -x*sinθ+y*cosθ-a*sinθ+b*cosθ z+c 1 > 行った操作(平行移動→回転)を逆にしたときの座標を4次元マトリックスを用いて表すにはどうすればいいのですか? X1=A*Bの逆行列 X2=X1~をYに掛ければ X=Y*X2 が得られます。 > また、両者は一致するのですか? 勿論一致します。 X2=X1~=[A*B]~= (2cos^2θ-1+sin^2θ)/{(2cos^2θ-1)*cosθ} sinθ/(2cos^2θ-1) 0 0 sinθ/(2cos^2θ-1) cosθ/(2cos^2θ-1) 0 0 0 0 1 0 -a -b -c 1 となります。 上記のYにこのY2を掛けて、式を整理してやるとちゃんと Y*Y2=(x y z 1)=X と出てきましたよ。

bad-pc
質問者

お礼

計算の間違いの指摘までしていただきありがとうございました。 参考になりました。

関連するQ&A

  • 行列でA^nを求める問題です。

    B1=(cosθ)    (sinθ) B2=(cosθ sinθ) C1=(-sinθ)    ( cosθ) C2=(-sinθ cosθ) (わかりにくくて申し訳ありませんが、B1,C1は2×1行列 B2,C2は1×2行列を表しています。) a,bは0でない実数として、2次の正方行列AがA=aB1B2+bC1C2で表されているものとする。 A^n を求めよ。 という問題です。 正答はa^n B1B2 + b^n C1C2 になるそうです。 実際に代入して A=(acosθ^2+bsinθ^2      acosθsinθ-bsinθcosθ)   (acosθsinθ-bsinθcosθ   asinθ^2+bcosθ^2    ) を求めてみたりはしたのですが、そこからどう正答に持っていくかがわかりません。 お暇な時にでもご回答よろしくお願いします

  • 原点中心に図形を回転させる。(サインとコサイン)

    xy座標上にある図形を原点中心に回転させるためには x'=xcosθ-ysinθ y'=xsinθ+ycosθ と書いてあります。 どうしてこうなるのかわかりやすく教えてください。 サイン、コサインについては何も知らないので、そこのところの説明からお願いします。猿です。

  • いろいろな曲線

    1.2定点(±c,0)からの距離の和が一定値2a(a>c)である点の軌跡が、円の標準形で表されることを確かめなさい。 sqrt((x-c)^2+y^2)+sqrt((x+c)^2+y^2)=2a ここで(x-c)^2+y^2+(x+c)^2+y^2=2(x^2+y^2+c^2)を使い (X+Y)^2+(X-Y)^2=2X^2+2Y^2により |sqrt((x-c)^2+y^2)-sqrt((x+c)^2+y^2)|=sqrt(4(x^2+y^2+c^2-a^2) ←この変形が理解できません。 2.楕円x^2/a^2+y^2/b^2=1の周上Pでの接線は、焦点F、F'と結ぶ角FPF'の外角をニ等分することを証明しなさい。 楕円x^2/a^2+y^2/b^2=1楕円の周上の点を媒介変数表示x=acosθ,y=bsinθで表すと、接線の傾きは-bcosθ/acosθ 焦点を結ぶ直線の傾きはそれぞれbsinθ/(acosθ-c),bsinθ/(acosθ+c)(c=sqrt(a^2-b^2))これと接線とのなす角の正接は、前者が(absin^2θ+bcosθ(acosθ-c))/(asinθ(acosθ-c)-b^2sinθcosθ) ←この式が導出できません。 3.楕円x^2/a^2+y^2/b^2=1(a>b>0)の外部の一点Pから楕円に引いた2本の接線が直交するような性質をもつ点Pの軌跡を求めなさい。 楕円上の2点s(acosθ,bsinθ),(acosφ,bsinφ)での接線が直交するとすると a^2sinθsinφ+b^2cosθcosφ=0 両接点の交点の座標は x=a(sinφ-sinθ)/(cosθsinφ-sinθcosφ) y=b(cosθ-cosφ)/(cosθsinφ-sinθcosφ) x^2+y^2=[a^2(sin^2θ+sin^2φ)+b^2(cos^2θ+cos^2φ)]÷(cos^2θsin^2φ+sin^2θcos^2φ-2sinθcosθsinφcosφ) 分子の-2a^2sinθsinφ-2b^2cosθcosφは直交条件によって0になる。 分母の(a^2+b^2)倍を分子から引くと ←どうしてそうするのかわかりません。  2a^2sin^2θsin^2φ+2b^2cos^2θcos^2φ+2(a^2+b^2)(sinθcosθsinφcosφ) ←導出できず。 =2(sinθsinφ+cosθcosφ)(a^2sinθsinφ+b^2cosθcosφ)=0であり、 x^2+y^2=a^2+b^2 ←導出できず。 となる。 多くて恐縮ですがご教示いただければと思います。

  • 二階微分方程式の問題

    y"+4y=2xsin2x 解:Asin2x+Bcos2x-1/4x^2cos2x+1/8xsin2x の問題なのですが、 補助方程式y"+4y=0の一般解は特性方程式から、 Asin2x+Bcos2xとわかるのですが。 特殊解の-1/4x^2cos2x+1/8xsin2x の求め方がわかりません。 どなたか教えてください。

  • 合成関数の問題について教えて下さい

    問.関数f(x,y)をu=xcosα-ysinα,v=xsinα+ycosαと変数変換してu,vの関数g(u,v)とみなす。 (a)∂f/∂x=cosα(∂g/∂u)+sinα(∂g/∂v),∂f/∂y=-sinα(∂g/∂u)+cosα(∂g/∂v)を確かめよ。 (b)(∂f/∂x)^2+(∂f/∂y)^2=(∂g/∂u)^2+(∂g/∂v)^2を示せ (c)(∂^2)f/∂x^2+(∂^2)f/∂y^2=∂^2g/∂u^2+∂^2g/∂v^2 お願いしますm(_ _)m

  • 左辺=右辺を満たす条件について

    a,b,c,d,θは実数です。(ad-bc≠0) 下の行列の等式を満たす条件はa,b,c,dがどんなときか。 (acosθ+bsinθ bcosθ-asinθ)=(acosθ-csinθ bcosθ-dsinθ) (ccosθ+dsinθ dcosθ-csinθ) (asinθ+ccosθ bsinθ+dcosθ) 左辺と右辺の各成分を比較して、 acosθ+bsinθ=acosθ-csinθ と bcosθ-asinθ=bcosθ-dsinθ よりそれぞれ、bsinθ=-csinθ と -asinθ=-dsinθになります。 ここで、質問なんですが、この2つの式から b=-c, a=d と即座にいって良いのでしょうか。 sinθ=0のとき、sinθ≠0のときで場合分けが必要でしょうか。

  • 座標の回転

    x,y座標で表されるある点を反時計回りにα°回転したX、Y座標に変換しました。 かつてこのサイトで教えていただいたとおり (x、y)=(rcosθ,rsinθ)とおき,αだけ回転した座標なので (X,Y)=(rcos(θ+α),rsin(θ+α)) 加法定理を使って X=xcosα-ysinα Y=xsinα+ycosα と計算しました。 ところが,ある本に同様の計算がついていたのですが, X=xcosα+ysinα Y=-xsinα+ycosα となっており正負が異なります。(私と同じように反時計回りの回転)  私の計算が違っているのでしょうか。それとも何かの仮定が異なっているのでしょうか。 (ちなみにある本は作図により上記の結果を求めています。)  分かりにくいかもしれませんが,適切な指摘をお願いいたします。

  • ニュートンの法則についての質問です

    一つの座標系(X,Y,Z)とそれをθだけ回転したもう一つの座標系(X´,Y´,Z´)がある。座標の変換式と力の変換式はそれぞれ X´=Xcosθ+Ysinθ Y´=Ycosθ-Xsinθ Z´=Z F´x=Fxcosθ+Fysinθ F´y=Fycosθ-Fxsinθ F´z=Fz であたえられる この時二つの座標系でニュートンの方程式の形が変わらないことを示せ この問題がわかりません…

  • 左手系のオイラー角で説明しているのでしょうか

    オイラー角の説明で、 z軸まわりにφだけ回転させると、添付図のように (x,y,z)軸は(x',y',z')軸の位置まで運動する。 そしてこの回転による座標系の変換式は x'=xcosφ+ysinφ y’=-sinφ+ycosφ とあるのですが、これは左手系で 説明していると考えて宜しいですか。

  • 3次元のベクトルの回転

    任意の3次元ベクトルrをある角度θ、φだけ回転させた時のベクトルをr’とした場合、どのように求めることができるのでしょうか? 2次元の場合は、 x' = xcosθ + ysinθ y' = -xsinθ + ycosθ として求めることができたのですが、3次元は全くわかりません。 宜しくお願い致します。