• ベストアンサー

コンパクトの問題

「コンパクト空間の無限集合は必ず集積点を持つ。」を証明する問題で、有限交差性に基づく証明をする際、 「Aをコンパクト空間の無限集合とし、背理法で示す。Aは集積点を持たないとする。{x_1、x_2・・・}⊆Aをとる。各nについてF_n={x_n、x_n+1・・・}とおくと、これは閉集合。F_n1∩F_n2∩・・・∩F_nk=F_n≠φ(n=Max(n_1,n_2・・・,n_k))なので、{F_n}は有限交差性を持つ。しかし、∩_n=1~∞ F_n=φより、これはコンパクトなことに矛盾。」 としてあります。 分からない点は、(1)n=Max(n_1,n_2・・,n_k)で、これはなにを意味するのか? (2)しかし、∩_n=1~∞ F_n=φとあるが、なぜ、当たり前のように書かれてあるのか?当たり前のことなのか? 以上の二つです。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • uyama33
  • ベストアンサー率30% (137/450)
回答No.1

(1)n=Max(n_1,n_2・・,n_k) これは、n が {n_1, n_2 ・・, n_k} の中で 最大の数であることを意味します。 (2) ∩_n=1~∞ F_n=φ については、  もし、空集合でないならば、ある x_n0 でどの ∩F_nk にも含まれるものがあることになります。 この要素は、最初の集合{x_1、x_2・・・}の中にあります。 この書き方は、この集合が可付番集合(加算無限)であることを 意味する書き方です。  従って、この集合に属する x_n0 には自然数での番号が 付いています。 F_n={x_n、x_n+1・・・} ですので 最初の方からだんだん減っていくので、 x_n0 についている自然数よりもおおきな番号を持つ F_n={x_n、x_n+1・・・} には x_n0 は入っていません。 従って、共通部分にずっと入っているような要素は存在しない。 無限大まで共通部分を取れば全てがふるい落とされて 結局、空集合になってしまいます。 当然と言えば当然です。

ikecchi
質問者

お礼

ありがとうございました。たしかに、よくよく考えれば、(2)は当然なのかもしれませんね。 >加算無限  これは可算無限ではないのですよね? また、(1)でMaxの意味はもちろんわかるのですが、nがn1,n2,・・,nkの最大ということが何を意味するのかがわからないというか。上手く表現できません。。。F_n1とかは、F_nのなんなのかが分からないのです。

その他の回答 (5)

  • nakaizu
  • ベストアンサー率48% (203/415)
回答No.6

F_nは点集合の閉包と勘違いしていました。単純な点の集合ですので、(2)はあきらかです。 そうするとF_nが閉集合であることを別に示す必要があります。(自明に近いことかもしれませんが、集積点があるときにはF_nが閉集合にならないこともあるので念のために)

ikecchi
質問者

お礼

はい、ありがとうございます。F_nが閉集合を示すのは、背理法から示すことができました。

回答No.5

(2) ∩_n=1~∞ F_n=φ に関してはuyama33さんの説明の通り(F_nの定義を用いる)であって、 No4の説明は不備を含みます。但し、 「∩_n=1~∞ F_n∋x となる xが存在するとxはAの集積点になる」 は前提条件が正しくない(この共通部分は空だからxは存在しない) ので結論は何であっての「」内の主張は(たまたま)正しいのですが、、、 しかし、このことはあくまでもこの証明中のF_nに対して成り立つことであって、「」内のみを独立させた命題としたときは一般的には成り立ちません。

  • nakaizu
  • ベストアンサー率48% (203/415)
回答No.4

(1)の疑問は解決しましたか? (2)については下で回答された方の説明が少しおかしいので、アドバイスします。 ∩_n=1~∞ F_n∋x となる xが存在するとxはAの集積点になる(集積点の定義をよく見て下さい)のですが、仮定によりAには集積点がないのでこのようなxはありません。 実際にはAには集積点があるので、∩_n=1~∞ F_n はAの集積点の集合になるはずです。 どこまで理解されているのか分からないので、この説明で理解されるかどうか分かりませんが。

ikecchi
質問者

お礼

解答ありがとうございます。(1)の方が少し理解できません。また、なぜ集積点になるのかわかりません。任意のxの近傍Uに対して、(U\{x}) ∩_n=1~∞F_n ≠ φ ですよね??果たして存在するのか??

  • uyama33
  • ベストアンサー率30% (137/450)
回答No.3

岩波書店から 位相空間  と言う本が出ています。 著者を忘れました。  厚くて難しそうな本です。 この本では、コンパクトの定義が この問題の形で書いてあったと思います。 とにかく、コンパクトの定義や 性質をもう一度、本を見て確認して下さい。

  • uyama33
  • ベストアンサー率30% (137/450)
回答No.2

可算無限 の意味でした。 文字を間違えました。 補足します。 有限交差性を持つ集合の族を作ったのです。 F_n1∩F_n2∩・・・∩F_nk この共通部分は この中の、番号が最大なものに一致すると言っているのです。 それが F_n です。  共通部分が、その中の一つに一致するとは限らないのがふつうですが、 F_n の作り方から、一致するのです。

ikecchi
質問者

補足

ということは、「F_n1∩F_n2∩・・・∩F_nk=F_n=φとすると、{F_n}は有限交差性を持つが、∩_n=1~∞ F_n=φとなるので矛盾」ということなんですかね?有限交差性を持つと仮定しても、無限大まで飛ばすと共通分がないということなんですか?

関連するQ&A

  • 距離空間におけるコンパクト性

    距離空間において、コンパクト集合と点列コンパクト集合が同値であることの証明をできるだけ理解したいのですが、参考書のの証明がイマイチ理解できません。 (参考書の証明) (1) コンパクト距離空間Xの任意の点列{x_n}n=1,2,…が収束部分列をもつことを示す。 この点列に対して、A_k={x_k,x_k+1,…}とおき、その閉包(A_k)'全体のなす集合族{(A_k)'}を考える。 {(A_k)'}の各元(A_k)'は空でない閉集合で、単調減少(A_1)'⊃(A_2)'⊃…(A_k)'⊃…であるから有限交叉性をもつ。したがって、Xのコンパクト性より共通部分(A_k)'は空でない。共通部分(A_k)'から1点xを選べば、xは(A_1)'に属するからd(x_(n_k),x)≦1/kなるx_(n_k)∈A_kが存在する。このとき、n_k≧kより数列{n_k}は異なる自数数を無限個含むから、{x_(n_k)}は{x_n}の部分列であり、また明らかにxに収束する。よって、点列{x_n}は収束部分列をもつ。 (2) 距離空間Xが点列コンパクトであると仮定し、Xの任意の開被覆{V_λ}が有限部分被覆をもつことを言う。最初に、{V_λ}に対して、ε>0が存在して、任意のx∈Xのε近傍U(x;ε)が{V_λ}のどれかの元V_λに含まれることを示す。このようなεを開被覆{V_λ}のルベーグ数とよぶ。ルベーグ数が存在しないならば、各kに対し、その1/k近傍がどの{V_λ}の元にも含まれないような点x_k∈Xをとることができる。こうして得られた点列{x_k}は、Xの点列コンパクト性より収束部分列をもつ。その極限をx_∞とおくと、{V_λ}はXの被覆であるから適当なV_λ∈{V_λ}がx_∞を含む。V_λは開集合であるから、μ>0が存在してU(x_∞;μ)⊂V_λ。十分大きいk'をとれば、1/k'<μ/2とd(x_k'、x_∞;μ)<μ/2とが同時に成り立つが、このときU(x_k';1/k')⊂U(x_∞;μ)⊂V_λとなって点列{x_k}のとりかたに矛盾する。すなわちルベーグ数の存在が示さfれた。さて開被覆{V_λ}が有限部分被覆を持たないとして矛盾を導く。{V_λ}に対するルベーグ数をεとし、これを用いてXの点列{x_n}を以下のように構成する。まず任意のx_1∈Xを選ぶ。このとき、U(x_1;ε)を含むV_(λ1)∈{V_λ}が存在する。もし、X-V_(λ1)が空ならばXがV_(λ1)だけで覆われるからX-V_(λ1)≠φであり、点x_2∈、X-V_(λ1)を選ぶ事ができる。同様にU(x_2;ε)を含むV_(λ2)∈{V_λ}が存在するが、X-(V_(λ1)またはV_(λ2))はやはり空でない。よって、x_3∈X-(V_(λ1)またはV_(λ2))を選ぶ事ができる。この操作を繰りかえして得られた点列{x_n}はn>mに対してx_nはU(x_m;ε)に含まれない、すなわちd(x_n、x_m)≧εを満たすから収束部分列を含みえない。これはXが点列コンパクトであることに反し、矛盾が生じた。 (証明終わり) まず有限交叉性の全く意味がわかりません。 私は、点列コンパクトとコンパクトの定義を以下のように学習しています。 X:集合、P:開集合族 (X、P):位相空間 K⊂Xがコンパクト ⇔{U_λ}⊂Pかつ和集合U_λ⊃K(λ∈Λ)、この時、和集合U_(λ_k)⊃K(k=1→n)となるようなλ_1、…、λ_n∈Λが存在する。 K⊂Xが点列コンパクト ⇔K内の任意の無限点列{x_n}(n=1、2、…)がKの点に収束する部分列を持つ。 なるべく定義に従って、証明していきたいです。 どなたか、詳しく証明を解説してほしいです。 回答よろしくお願いします。

  • 開集合がコンパクトでない理由

    コンパクトとは、有限と無限に関するもの(有界閉集合)である ことは何となく分かっているつもりです。 しかし、開集合がコンパクトでない理由がいまいち分かりません。 たとえば、よく教科書に掲載されている例として 開区間(-1,1)を、Xn=(-n/(n+1),n/(n+1)) (n∈N)  ※Nは自然数全体 で覆うというものがあり、これは有限部分被覆を持たないというものです。 でも、Xnの最後は(-1,1)なので、この一つをとりだせば それだけで有限被覆となると思います。 この矛盾はどこから来るのか分かりません。 どなたか、ご教授ねがいます。

  • 以下の証明を考えています。

    以下の証明を考えています。 任意のε>0に対して、N(x,ε)∩Aは無限集合⇔xがAの集積点 任意のε>0に対して、N(x,ε)∩Aは無限集合とういことが何を意味するのか理解できておりません。 どなたかご教授いただければ幸いです。

  • 固有値の集合のコンパクト性の証明が分かりません

    Cは複素数体でφ≠A⊂C,F:A→C^{n×n}としσ(F(x))をn×n複素行列F(x)の固有値集合を表すものとします。x∈A Aがコンパクトなら∪_{x∈A}σ(F(x))もコンパクトである事を示したいのですが,どうすればいいのでしょうか?

  • コンパクトの判定についての質問

    こんにちは。 B^2 = {(x,y)∈R^2 | x^2 + y^2 ≦1} がコンパクトかどうかハイネボレルの定理を使わないで判定せよ という問題がわかりません。 ハイネボレルの定理から多分コンパクトなんだろうけど、それをどうやってハイネボレルを使わないで証明したらよいのでしょうか?? 定義に基づいてやろうとしたのですが、開被覆としてU_n=((0,0),1-(1/n)) n∈Nを考えたのですが、これでは有限個の和集合でB^2が作れなくて困ってます。 どなたかアドバイスお願いします

  • 位相空間における集積点

    U(n)={n∈N|n,n+1,n+2,…} O={Φ}∪{U(n)} と与えられています。(N:自然数、Φ:空集合) (N,O):位相空間におけるA={1,3,5,7,9}の集積点を求める問題で、質問があります。 私が解いた結果、集積点は 1,2,3,4,5,6,7,8 だなって思ったんです。(これあってますよね??) で、問題はその後なんですけど、9以上の自然数が集積点でないことを示した方がいいですよね。その場合、 9≦x∈N については、  x∈U(n)となるU(n)は 1≦n≦x だが、  U(i)∩A=Φ (for i≧9, i∈N) したがって9以上の自然数は集積点ではない。 っていう証明で、示せてますか??なんか論理的じゃない気がして…。アドバイスしてもらえませんか。よろしくお願いします。

  • 大学数学の次の問題がわかりません。わかる方、教えてください。

    大学数学の次の問題がわかりません。わかる方、教えてください。 位相空間Xにおいて、次の二つは同値となることを示せ。 (1)Xの可算個の閉集合F_n(n=1,2,3,...)に対してA=∪(n=1~∞)F_nが内点をもてば、少なくとも一つのF_nは内点を持つ。 (2)Xの可算個の開集合G_nがXで稠密ならばA=∩(n=1~∞)G_nもXで稠密である。 お願いします。

  • 述語論理におけるコンパクト性 いくらでも大きい有限

     述語論理のコンパクト性より  「論理式の集合△は、いくらでも大きな有限集合を議論領域とするモデルによって充足可能ならば、△は無限集合を議論領域とするモデルによって充足可能である」 というものが、出てきますが、 そもそも、このいくらでも大きい有限集合と無限集合とは異なるものなのでしょうか(同じ意味ならば上の定理は何もいってないことになりますよね)。無限集合の定義というのがZFCの無限公理からのものなら帰納的に定義されているものなので、それならいくらでも大きい有限(k→k+1をいえる)というのと同じなのではないですかね・・・。  また、上の証明では Anを「すくなくともn個のものがある」 たとえばA2は「∃x1∃x2(x1≠x2)」などとして △∪{A1,A2,A3,A4,A5・・・An・・・} を考えるわけですが・・・の部分はこのままでは無限の論理式を含んだ形になっています、がこれも無限の論理式をそのまま考えることはできないので「無限個の論理式とはどういう意味か」に相当する(おそらくメタ的な)定義があると思うのですが、それはそういったものでしょうか。もしくはそういう定義がないとすると、どう考えればいいのでしょうか。  質問としては、集合のレベルでの無限といくらでも大きい有限とは異なるものなのかということと、論理式の数においてその数が無限とはどういうことを指しているのかということです。  コンパクト性などはモデルと論理式の両方にまたがるメタ的定理なので、その内容に現れる無限という言葉は(「集合における無限」、「論理式の数における無限」として)それぞれの体系での意味としてとらえる必要があるにも関わらず日常語の意味(限りがないというラフな使い方)にひっぱられていることが私の混乱の原因としてあると思うのですが、この分野に明るい方いらっしゃいましたらご回答ください。よろしくお願いします。

  • ”コンパクト”の定義について。集合、位相

    集合論における、”コンパクト”の定義について質問です。 言い回しの違いがあるにせよ、以下の2種類があるようですが どちらが正しいのでしょうか? (その1) コンパクトであるとは、位相空間Xの任意の開被覆が、必ずXの有限被覆を部分集合として含むことである。 (その2) ある集合Aを、有限個の開集合の和で覆えるときにコンパクトという。 個人的には、(その1)の定義が正しいとおもっています。 ”位相空間”であることが、前提条件でないと 話が進まない気がしています。

  • 位相空間のコンパクト化の問題で困っています。

    最初に問題と回答を写します (X,〇)、(X',〇')、(X'',〇'') をそれぞれ 〇, 〇', 〇''を開集合系とする位相空間 f:X→X' g:X'→X'' を連続写像とする 問:Y⊂X がコンパクトであるとき f(Y) がコンパクトになることを証明せよ 答:ц={U(λ)|λ∈Λ} を f(Y) の開被覆とすると f が連続写像であることより ц'={f^(-1)・(U(λ)) |λ∈Λ} は Y の開被覆となる Y はコンパクトであるから,ある ц' の部分被覆 {f^(-1)・(U(λ1))、f^(-1)・(U(λ2))、…、f^(-1)・(U(λn))} が存在する。このとき {U(λ1)、U(λ2)、…、U(λn)} が ц の部分被覆になるのは容易に分かるので f(Y) はコンパクト ■ この最後のところで、どうして {U(λ1)、U(λ2)、…、U(λn)} が цの部分被覆になるのかが分からないので教えて欲しいです。 よろしくお願いします。別解などありましたら歓迎です。