• 締切済み

まつわり数

位相幾何学の分野でのまつわり数(linking number、絡み数、絡み合い数、纏絡数とも言う)の定義についてです。 3次元空間でのまつわり数の定義は分かり易く書かれた本が多く出版されているのですが、そのn次元集合での定義となるとたいていの本では触れられておらず、書いてあっても難しすぎて分かりにくいものばかりです。 まつわり数のn次元集合における定義について分かり易く説明されている本を探しています。 どなたかお薦めの本はございませんか?

みんなの回答

  • ojisan7
  • ベストアンサー率47% (489/1029)
回答No.1

高次元の結び目、絡み目理論の本は、和書では少ないと思います。洋書をお探しになった方が宜しいかと思います。

参考URL:
http://www.amazon.com/phrase/higher-dimensional-links
ibushigin9
質問者

お礼

和書で良書があれば、と思ったのですが…。 参考になりました。 ありがとうございます。

関連するQ&A

  • 位相次元について記載されている本を探しています

    位相次元について調べているのですが、位相幾何の本を見ても記載されておらず、位相次元について記載されている本が見つからなくて困っています。 位相次元の定義などが書かれている本を教えて頂きたいです。 本だけでなくサイトのURLでもかまいません。 よろしくお願いします。

  • n次元ユークリッド空間って何?

    位相幾何学で出てくるn次元ユークリッド空間について質問があります。4次元は相対性理論なんかで出てきますが5次元以上の空間って一体何なんでしょうか?

  • 「収束」を定義すれば、位相も定義できる?

    位相空間では、点列の収束という概念が定義されていると思います。手元に適当な本がないので、不確かな記憶ですが、 位相空間Xの点列(a_n)がαに収束する ⇔αを含む任意の開集合Oについて、あるNが存在して、n≧Nならばa_n∈Oである という雰囲気の定義だったと思います。(nは自然数のような離散的な値ではなくてもよいはずですが、自然数と考えて問題ありません) さて、ある空間X上の点列(a_n)に対して「収束(極限)」の概念を定義したとしたとします。 この時、空間Xに適当な位相構造を入れてやる事で、位相空間Xにおける収束と、ここで定義した収束が一致するようにする事は可能でしょうか?(もし、必要なら、Xはベクトル空間としても構いません) そもそも何を「収束」と呼ぶべきかすら分からないですが、一般的な定義あるのであればその定義と考えて差し支えありません。(ないのであれば、困ってしまうのですが、きっとあるでしょう) 具体的な例としては、ヒルベルト空間の線型演算子には、「弱収束」や「強収束」と言った概念がありますよね。これらの意味の収束を与える位相は存在するのか、という事です。(具体的にどう構成するのかは知りませんが、「弱位相」とか「強位相」と呼ばれる位相があったと思います)

  • ユークリッド空間と距離空間の違いについて

    位相の本を読んでいるのですが ユークリッド空間と距離空間の違いがよくわかりません。 両方とも距離が定義されています。 違いと言えば、対象としている集合が ユークリッド空間R^n 距離空間は、一般の集合 です。 一般の集合に対して、距離というものが定義できるものが 距離空間で、ユークリッド空間はその1つと考えれば よいのでしょうか。 以上です。

  • n次元球面はn次元位相多様体であることを示せ。

    S^n={x∈R^(n+1)│∥x∥=1} はn次元位相多様体となることを示せ。 S^nはn次元球面 R^(n+1)は(n+1)次元数空間 多様体の勉強をしています。「位相空間Mがハウスドルフ空間であり、なおかつMの任意の点pについて、pを含むm次元座標近傍(U,φ)が存在するとき、Mはm次元位相多様体である」という定義はわかっているのですが、証明ができません。 R^(n+1)がハウスドルフ空間であること、ハウスドルフ空間の部分空間もまたハウスドルフ空間であるという知識は既知として使っていただいてかまいません。(はずかしながら、座標近傍の存在を示すプロセスが思いつかないのです。)

  • 射影空間の定義について

    射影幾何のついて学び始めたのですが、抽象的なためか定義の理解に苦しんでいます。 「複素ベクトル空間Vの射影化P(V)とは、V\0の同値関係~による商である。」とあり、直後の問題で、「このP(V)とVの1次線形部分空間の集合と自然な1体1対応があること示せ。」とあります。私としては、n次元ベクトル空間Vに対する1次元部分ベクトル空間との1体1対応、かと思っていたのですが、違う本を参照してみると、 「Def.ベクトル空間Vの1次元線型部分空間をP(V)とかき、射影空間と呼ぶ。Vがn+1ならばP(V)はn次元であるという。」と、ありました。 質問は次です。 Q,下の定義において、1次元線形部分空間なのに、なぜn次元の話になるのか。 この時、上の問題の回答は、 (x0,x1,…,xn)→(x1/x0,…,xn/x0) と対応付ければ終わりでしょうか。 よろしくお願いします。

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • X:n次ユークリッド空間 R^n

    X:n次ユークリッド空間 R^n U:密着位相,離散位相でない位相 とします. このとき,∀x∈Xに対し,{x}を考えたとき,{x}は(X,U)内で開集合になりますか? 開集合の定義は,(X,U)が位相空間であるとき,Uの元のことを言うのだと思うのですが,これは位相Uの作り方によって変わってきますよね? xをXから任意に選んできても,{x}を含むように位相Uを作れば,そのUを位相とする位相空間(X,U)内であれば{x}は開集合ですか? もし離散空間であれば明らかに{x}は開集合ですし,密着空間であれば{x}は開集合でないと言えます.しかし上記のような位相の場合は,一概には言えないという解釈でいいのですか?というより,先にある位相空間が与えられていて,それに対して{x}が開集合かどうかという話でしょうか? 長々とすいませんが,よろしくお願いいたします.

  • 商位相空間

    X=R^n+1-(0,0,…,0)のおいて(x0,…,xn)~(λx0,…,λxn)(λ≠0)により 関係~をX上に定義する。 (a)~が同値関係になることを示せ。 (b)商位相空間X/~をRP^nと表し、n次元実射影空間という。 RP^nがハウスドルフ空間であることを示せ。 (a)に関しては問題が曖昧な気がするのですが…。 これは (x0,…,xn)~(y0,…,yn)⇔∃λ≠0 s.t.(y0,…,yn)=(λx0,…,λxn) ということでいいのですか? (b)ですがハウスドルフ空間の定義は X上の任意の異なる二点x,y∈Xに対して二つの開集合U,Vで x∈U、y∈VかつU∩V=φとなるものが存在する。 ということですよね。 商位相空間X/~はどのような位相空間になるのでしょうか?

  • 2つの位相多様体の直積空間は位相多様体になる。

    Mをm次元位相多様体とする。Nをn次元位相多様体とする。このとき、直積空間M×Nは(m+n)次元位相多様体であることを示せ。 ハウスドルフ空間の直積空間もまたハウスドルフ空間であるという事実は、既知として利用して下さって差し支えありません。ご助力お願いいたします。