総ありがとう数 累計4,290万(2014年11月1日現在)

毎月4,000万人が利用!Q&Aでみんなで助け合い!

-PR-
helium

任意の単位格子(一辺の長さがそれぞれa, b, c, 軸角がα, β, γ)において、格子面(結晶面)F1(h1,k1,l1)とF2(h2,k2,l2)の間にできる面角はどのように求めれば良いのでしょう?

*例えば、NaClの単位格子は立方晶系で a = b = c = 5.64 Å (α = β = γ = 90°)ですが、このときの結晶面(100)と(111)の間の面角は、54.73°、の求め方は?または立方晶系以外のときは?
  • 回答数2
  • 気になる数0

Aみんなの回答(全2件)

質問者が選んだベストアンサー

  • 2006-12-14 21:54:25
  • 回答No.2
>この間、ここではどのような計算プロセスが行なわれているのでしょうか・・・
そんな事は、ソースを見ないと分からないので、求める方法が1つわかればいいですよね。(原理的にはa→等を成分計算すれば求められますが、ぞっとするほど面倒な計算だと思うのでそれとは違う方法で)

Arccos(|n1→・n2→|/|n1→||n2→|) (のArccosの中身)をa→・b→などの内積だけを用いて書くことができれば、こういう内積はa→・b→=abcosγと分かっているので、具体的に計算できますよね。

そこで、A,B,C,Dを3次元ベクトルとしたとき、一般に、
(A×B)・(C×D)=(A・C)(B・D)-(A・D)(B・C)
が成り立つ事を利用します。

n→=h b→×c→+k c→×a→+l a→×b→の形を見れば分かると思いますが、
Arccos(|n1→・n2→|/|n1→||n2→|)
にはこの形の内積しか出てきませんよね。より具体的には、
(a→×b→)・(a→×b→)
(a→×b→)・(a→×c→) 
の形のもの(およびa,b,cを入れ換えたもの)しか出てきません。上に書いた式を用いれば、それぞれ、
a^2b^2(sinγ)^2
a^2bc(cosα-cosβcosγ)
のように書くことができるので、Arccos(|n1→・n2→|/|n1→||n2→|)も具体的に求める事ができます。

※もし、具体的な式が知りたいのなら、ご自分で計算してください。
お礼コメント
ご丁寧にご返答下さいましてありがとうございました。
つまり、手計算では大変面倒な計算を必要としてしまうということですね。
よって、現実的には手計算では等軸晶系のものまでが計算できる範囲と考えた方が良いということのようですね。
この度は、何度も丁寧に解説を下さいましてありがとうございました。重ねてお礼申し上げます。
投稿日時 - 2006-12-24 15:44:33
  • 同意数0(0-0)
  • ありがとう数0

その他の回答 (全1件)

  • 2006-12-11 23:18:35
  • 回答No.1
要するに、結晶面の法線ベクトルのなす角を求めればいいわけですよね。

一般の単位格子において、結晶面(hkl)の法線ベクトルは
n→=h b→×c→+k c→×a→+l a→×b→
となるので(規格化は考えてません)、F1(h1,k1,l1)とF2(h2,k2,l2)のなす角は
Arccos(|n1→・n2→|/|n1→||n2→|)
と表わす事ができます。逆格子空間で考えるシンプルになるのかもしれませんが、どっちにしても、a,b,c,α,β,γを使って具体的に書き表すのは大変かも。

特に、立方晶の場合は、法線ベクトルが
n→=(h,k,l) (=h a→ + k b→ + l c→)
となるので、計算がメチャクチャ簡単ですね。仰る例であれば、Arccos(1/√3)=54.73561°と求まります。
お礼コメント
ご回答いただきましてありがとうございます。
なるほど、法線ベクトルのなす角を求めれば良いのですね。
つまり、内積の関係を使って求めれば求まるわけですね。良く分かりました。

ところで、ぶしつけながらご質問させて頂きますと、主軸が単斜晶系のように傾くと、具体的にはどのように求めれば良いのですか?
確かに立方晶系よりは計算が大変になりそうな感じは分かりますが・・・
例. 白雲母 単斜晶系 a = 5.19, b = 9.03, c = 20.05, β = 95.5°
このときに (0 1 0) と (1 1 -1)の面角は、60.43827°と計算ソフトを使うと導いてきます。
この間、ここではどのような計算プロセスが行なわれているのでしょうか・・・

よろしくご回答お願い致します。
投稿日時 - 2006-12-13 13:46:25
通報する
  • 同意数0(0-0)
  • ありがとう数0
  • 回答数2
  • 気になる数0
  • ありがとう数0
  • ありがとう
  • なるほど、役に立ったなど
    感じた思いを「ありがとう」で
    伝えてください

関連するQ&A

その他の関連するQ&Aをキーワードで探す

別のキーワードで再検索する

あなたの悩みをみんなに解決してもらいましょう

  • 質問する
  • 知りたいこと、悩んでいることを
    投稿してみましょう
-PR-
-PR-
-PR-

特集

専門医・味村先生からのアドバイスは必見です!

関連するQ&A

-PR-

ピックアップ

  • easy daisy部屋探し・家選びのヒントがいっぱい!

-PR-
ページ先頭へ